A284942 Expansion of Sum_{k>=1} mu(k)^2*x^k*(1 - x)^2/(1 - 2*x)^2, where mu() is the Moebius function (A008683).
1, 3, 8, 19, 46, 107, 244, 547, 1213, 2665, 5807, 12567, 27042, 57899, 123428, 262115, 554750, 1170538, 2463154, 5170462, 10829234, 22635087, 47223412, 98353299, 204519549, 424665001, 880581806, 1823667221, 3772341661, 7794697759, 16089424392, 33178906531, 68357928558
Offset: 1
Keywords
Examples
a(4) = 19 because we have [4], [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1] and 0 + 2 + 2 + 3 + 2 + 3 + 3 + 4 = 19.
Links
Programs
-
Maple
a:= proc(n) option remember; add(`if`(numtheory[ issqrfree](j), ceil(2^(n-j-1)), 0)+a(n-j), j=1..n) end: seq(a(n), n=1..33); # Alois P. Heinz, Aug 07 2019
-
Mathematica
nmax = 33; Rest[CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k (1 - x)^2/(1 - 2 x)^2, {k, 1, nmax}], {x, 0, nmax}], x]]
-
PARI
x='x+O('x^34); Vec(sum(k=1, 34, moebius(k) ^2*x^k*(1 - x)^2/(1 - 2*x)^2)) \\ Indranil Ghosh, Apr 06 2017
Formula
G.f.: Sum_{k>=1} mu(k)^2*x^k*(1 - x)^2/(1 - 2*x)^2.
Comments