cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284943 Expansion of Sum_{p prime, k>=1} x^(p^k)*(1 - x)^2/(1 - 2*x)^2.

Original entry on oeis.org

0, 1, 3, 8, 20, 47, 110, 251, 564, 1251, 2750, 5994, 12978, 27934, 59825, 127565, 270959, 573575, 1210466, 2547562, 5348385, 11203292, 23419629, 48865346, 101782870, 211670094, 439548898, 911515214, 1887865266, 3905400206, 8070139762, 16658958223, 34355273843
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 06 2017

Keywords

Comments

Total number of prime power parts (1 excluded) in all compositions (ordered partitions) of n.

Examples

			a(5) = 20 because we have [5], [4, 1], [3, 2], [3, 1, 1], [2, 3], [2, 2, 1], [2, 1, 2], [2, 1, 1, 1], [1, 4], [1, 3, 1], [1, 2, 2], [1, 2, 1, 1], [1, 1, 3], [1, 1, 2, 1], [1, 1, 1, 2], [1, 1, 1, 1, 1] and 1 + 1 + 2 + 1 + 2 + 2 + 2 + 1 + 1 + 1 + 2 + 1 + 1 + 1 + 1 + 0 = 20.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; nops(ifactors(n)[2])=1 end:
    a:= proc(n) option remember; `if`(n=0, 0, add(a(n-j)+
          `if`(b(j), ceil(2^(n-j-1)), 0), j=1..n))
        end:
    seq(a(n), n=1..33);  # Alois P. Heinz, Aug 07 2019
  • Mathematica
    nmax = 33; Rest[CoefficientList[Series[Sum[Floor[1/PrimeNu[k]] x^k (1 - x)^2/(1 - 2 x)^2, {k, 2, nmax}], {x, 0, nmax}], x]]
  • PARI
    x='x+O('x^34); concat([0], Vec(sum(k=2, 34, (1\omega(k))*x^k*(1 - x)^2/(1 - 2*x)^2))) \\ Indranil Ghosh, Apr 06 2017

Formula

G.f.: Sum_{p prime, k>=1} x^(p^k)*(1 - x)^2/(1 - 2*x)^2.