A284947 Irregular triangle read by rows: coefficients of the cycle polynomial of the n-complete graph K_n.
0, 0, 0, 1, 0, 0, 0, 4, 3, 0, 0, 0, 10, 15, 12, 0, 0, 0, 20, 45, 72, 60, 0, 0, 0, 35, 105, 252, 420, 360, 0, 0, 0, 56, 210, 672, 1680, 2880, 2520, 0, 0, 0, 84, 378, 1512, 5040, 12960, 22680, 20160, 0, 0, 0, 120, 630, 3024, 12600, 43200, 113400, 201600, 181440
Offset: 3
Examples
1: 0 2: 0 3: x^3 4: x^3 (4 + 3 x) 5: x^3 (10 + 15 x + 12 x^2) 6: x^3 (20 + 45 x + 72 x^2 + 60 x^3) giving 1 3-cycle in K_3 4 3-cycles and 3 4-cycles in K_4 From _Peter Luschny_, Oct 22 2017: (Start) Prepending six zeros leads to the regular triangle: [0] 0 [1] 0, 0 [2] 0, 0, 0 [3] 0, 0, 0, 1 [4] 0, 0, 0, 4, 3 [5] 0, 0, 0, 10, 15, 12 [6] 0, 0, 0, 20, 45, 72, 60 [7] 0, 0, 0, 35, 105, 252, 420, 360 [8] 0, 0, 0, 56, 210, 672, 1680, 2880, 2520 [9] 0, 0, 0, 84, 378, 1512, 5040, 12960, 22680, 20160 (End)
Links
- Eric Weisstein's World of Mathematics, Complete Graph
- Eric Weisstein's World of Mathematics, Cycle Polynomial
Crossrefs
Programs
-
Maple
A284947row := n -> seq(`if`(k<3, 0, pochhammer(3,k-3)*binomial(n,k)), k=0..n): seq(A284947row(n), n=3..10); # Peter Luschny, Oct 22 2017
-
Mathematica
CoefficientList[Table[-(n*x*(2 - x + n*x - 2*HypergeometricPFQ[{1, 1, 1 - n}, {2}, -x]))/4, {n, 10}], x] // Flatten
Formula
T(n, k) = binomial(n, k)*Pochhammer(3, k-3) if k >= 3 else 0. - Peter Luschny, Oct 22 2017