cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A002807 a(n) = Sum_{k=3..n} (k-1)!*C(n,k)/2.

Original entry on oeis.org

0, 0, 0, 1, 7, 37, 197, 1172, 8018, 62814, 556014, 5488059, 59740609, 710771275, 9174170011, 127661752406, 1904975488436, 30341995265036, 513771331467372, 9215499383109573, 174548332364311563, 3481204991988351553, 72920994844093191553, 1600596371590399671784
Offset: 0

Views

Author

Keywords

Comments

Number of cycles in the complete graph on n nodes K_{n}. - Erich Friedman
Number of equations that must be checked to verify reversibility of an n state Markov chain using the Kolmogorov criterion. - Qian Jiang (jiang1h(AT)uwindsor.ca), Jun 08 2009
Also the number of paths in the (n-1)-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017

References

  • E.P.C. Kao, An Introduction to Stochastic Processes, Duxbury Press, 1997, 209-210. [From Qian Jiang (jiang1h(AT)uwindsor.ca), Jun 08 2009]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A284947 (triangle of k-cycle counts in K_n). - Eric W. Weisstein, Apr 06 2017

Programs

  • Magma
    [&+[Factorial(k-1)*Binomial(n,k) div 2: k in [3..n]]: n in [3..30]]; // Vincenzo Librandi, Mar 06 2016
    
  • Mathematica
    Table[Sum[((k-1)!Binomial[n,k])/2,{k,3,n}],{n,0,25}] (* Harvey P. Dale, Jun 24 2011 *)
    a[n_] := n/4*(2*HypergeometricPFQ[{1, 1, 1 - n}, {2}, -1] - n - 1); a[0] = 0; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Oct 05 2012 *)
  • PARI
    a(n)=sum(k=3,n, (k-1)!*binomial(n,k)/2) \\ Charles R Greathouse IV, Feb 08 2017

Formula

E.g.f.: (-1/4)*exp(x)*(2*log(1-x)+2*x+x^2). - Vladeta Jovovic, Oct 26 2004
a(n) = (n-1)*(n-2)/2 + n*a(n-1) - (n-1)*a(n-2). - Vladeta Jovovic, Jan 22 2005
a(n) ~ exp(1)/2 * (n-1)! * (1 + 1/n + 2/n^2 + 5/n^3 + 15/n^4 + 52/n^5 + 203/n^6 + 877/n^7 + 4140/n^8 + 21147/n^9 + ...). Coefficients are the Bell numbers (A000110). - Vaclav Kotesovec, Mar 08 2016
For n>2, a(n) = Sum_{k=1..n-2} A000522(k-1)*A000217(k). - Vaclav Kotesovec, Mar 08 2016

A144151 Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) = number of ways an undirected cycle of length k can be built from n labeled nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 3, 1, 5, 10, 10, 15, 12, 1, 6, 15, 20, 45, 72, 60, 1, 7, 21, 35, 105, 252, 420, 360, 1, 8, 28, 56, 210, 672, 1680, 2880, 2520, 1, 9, 36, 84, 378, 1512, 5040, 12960, 22680, 20160, 1, 10, 45, 120, 630, 3024, 12600, 43200, 113400, 201600, 181440
Offset: 0

Views

Author

Alois P. Heinz, Sep 12 2008

Keywords

Examples

			T(4,3) = 4, because 4 undirected cycles of length 3 can be built from 4 labeled nodes:
  .1.2. .1.2. .1-2. .1-2.
  ../|. .|\.. ..\|. .|/..
  .3-4. .3-4. .3.4. .3.4.
Triangle begins:
  1;
  1, 1;
  1, 2,  1;
  1, 3,  3,  1;
  1, 4,  6,  4,  3;
  1, 5, 10, 10, 15, 12;
  ...
		

Crossrefs

Columns 0-4 give: A000012, A000027, A000217, A000292, A050534.
Diagonal gives: A001710.
Row sums are in A116723. - Alois P. Heinz, Jun 01 2009
Excluding columns k=0,1,and 2 the row sums are A002807. - Geoffrey Critzer, Jul 22 2016
Cf. A284947 (k-cycle counts for k >= 3 in the complete graph K_n). - Eric W. Weisstein, Apr 06 2017
T(2n,n) gives A006963(n+1) for n>=3.

Programs

  • Maple
    T:= (n,k)-> if k<=2 then binomial(n,k) else mul(n-j, j=0..k-1)/k/2 fi:
    seq(seq(T(n,k), k=0..n), n=0..12);
  • Mathematica
    t[n_, k_ /; k <= 2] := Binomial[n, k]; t[n_, k_] := Binomial[n, k]*(k-1)!/2; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 18 2013 *)
    CoefficientList[Table[1 + n x (2 + (n - 1) x + 2 HypergeometricPFQ[{1, 1, 1 - n}, {2}, -x])/4, {n, 0, 10}], x] (* Eric W. Weisstein, Apr 06 2017 *)

Formula

T(n,k) = C(n,k) if k<=2, else T(n,k) = C(n,k)*(k-1)!/2.
E.g.f.: exp(x)*(log(1/(1 - y*x))/2 + 1 + y*x/2 + (y*x)^2/4). - Geoffrey Critzer, Jul 22 2016
Showing 1-2 of 2 results.