A167986
Triangle T(n,k) = Number of k-cycles on the graph of an n-orthoplex. n>=2, k>=3.
Original entry on oeis.org
0, 1, 8, 15, 24, 16, 32, 102, 288, 640, 960, 744, 80, 370, 1584, 5920, 18240, 43080, 69120, 56256, 160, 975, 5664, 30080, 141120, 564120, 1835520, 4542336, 7580160, 6385920, 280, 2121, 15624, 108080, 684480, 3876600, 19138560, 79805376
Offset: 2
T(3,3) = 8, because in dimension n=3, the cross-polytope is the octahedron, which has 8 3-cycles in its graph.
Triangle starts
0, 1;
8, 15, 24, 16;
32, 102, 288, 640, 960, 744;
80, 370, 1584, 5920, 18240, 43080, 69120, 56256;
...
In terms of cycle polynomials:
0*x^3 + 1*x^4;
8*x^3 + 15*x^4 + 24*x^5 + 16*x^6;
32*x^3 + 102*x^4 + 288*x^5 + 640*x^6 + 960*x^7 + 744*x^8;
...
Cf.
A085452 (2k-cycles on graph of n-cube).
Cf.
A144151 (k-cycles on (n-1)-simplex for k>3).
-
b:= func< n,k,j | (-1)^j*Binomial(n,j)*Binomial(2*(n-j),k-2*j)*2^(j-1)*Factorial(k-j-1) >;
A167986:= func< n,k | (&+[b(n,k,j): j in [0..Floor(k/2)]]) >;
[A167986(n,k): k in [3..2*n], n in [2..10]]; // G. C. Greubel, Jan 17 2023
-
T[n_, k_]:= Sum[(-1)^j*Binomial[n, j]*Binomial[2*(n-j), k-2*j]*2^j*(k - j - 1)!/2, {j, 0, Floor[k/2]}];
Table[T[n, k], {n,2,7}, {k,3,2*n}]//Flatten (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)
Table[Binomial[2n, k]*Gamma[k]*HypergeometricPFQ[{(1-k)/2, -k/2}, {1 - k, 1/2 -n}, -2]/2, {n,7}, {k,3,2n}]//Flatten (* Eric W. Weisstein, Mar 25 2020 *)
-
a(n,k)=sum(j=0,k\2, (-1)^j*binomial(n,j)*binomial(2*(n-j),k-2*j)*2^j*(k-j-1)!)/2;
for (n=2,6,for (k=3,2*n, print1(a(n,k), ","));print); \\ Andrew Howroyd, May 09 2017
-
def A167986(n,k): return simplify(binomial(2*n, k)*gamma(k)*hypergeometric([(1-k)/2, -k/2], [1-k, 1/2-n], -2)/2)
flatten([[A167986(n,k) for k in range(3,2*n+1)] for n in range(2,11)]) # G. C. Greubel, Jan 17 2023
A167981
Number of 2n-cycles on the graph of the tesseract, 2 <= n <= 8.
Original entry on oeis.org
24, 128, 696, 2112, 5024, 5736, 1344
Offset: 2
a(2) = 24 because there are 24 4-cycles on the graph of the tesseract.
The cycle polynomial is 24*x^4 + 128*x^6 + 696*x^8 + 2112*x^10 + 5024*x^12 + 5376*x^14 + 1344*x^16.
Cf.
A167982 (n-cycles on graph of 16-cell).
Cf.
A167983 (n-cycles on graph of 24-cell).
Cf.
A167984 (n-cycles on graph of 120-cell).
Cf.
A167985 (n-cycles on graph of 600-cell).
Cf.
A085452 (2k-cycles on graph of n-cube).
Cf.
A144151 (ignoring first three columns (0<=k<=2), k-cycles on (n-1)-simplex).
Cf.
A167986 (k-cycles on graph of n-orthoplex).
A167982
Number of n-cycles on the graph of the regular 16-cell, 3 <= n <= 8.
Original entry on oeis.org
32, 102, 288, 640, 960, 744
Offset: 3
a(3) = 32, because there are 32 3-cycles on the graph of the 16-cell.
Cycle polynomial is 32*x^3 + 102*x^4 + 288*x^5 + 640*x^6 + 960*x^7 + 744*x^8.
Cf.
A167981 (2n-cycles on graph of the tesseract).
Cf.
A167983 (n-cycles on graph of 24-cell).
Cf.
A167984 (n-cycles on graph of 120-cell).
Cf.
A167985 (n-cycles on graph of 600-cell).
Cf.
A085452 (2k-cycles on graph of n-cube).
Cf.
A144151 (ignoring first three columns (0<=k<=2), k-cycles on (n-1)-simplex).
Cf.
A167986 (k-cycles on graph of n-orthoplex).
A167983
Number of n-cycles on the graph of the regular 24-cell, 3 <= n <= 24.
Original entry on oeis.org
96, 360, 1440, 7120, 37728, 196488, 974592, 4536000, 19934208, 82689264, 322437312, 1171745280, 3924079104, 11964375936, 32761139328, 79244294016, 165800420352, 291640320576, 413774810112, 443415854592, 318534709248, 114869295744
Offset: 3
a(3) = 96, because there are 96 3-cycles on the graph of the 24-cell.
Cycle polynomial is 96*x^3 + 360*x^4 + 1440*x^5 + 7120*x^6 + 37728*x^7 + 196488*x^8 + 974592*x^9 + 4536000*x^10 + 19934208*x^11 + 82689264*x^12 + 322437312*x^13 + 1171745280*x^14 + 3924079104*x^15 + 11964375936*x^16 + 32761139328*x^17 + 79244294016*x^18 + 165800420352*x^19 + 291640320576*x^20 + 413774810112*x^21 + 443415854592*x^22 + 318534709248*x^23 + 114869295744*x^24.
Cf.
A167981 (2n-cycles on graph of the tesseract).
Cf.
A167982 (n-cycles on graph of 16-cell).
Cf.
A167984 (n-cycles on graph of 120-cell).
Cf.
A167985 (n-cycles on graph of 600-cell).
Cf.
A085452 (2k-cycles on graph of n-cube).
Cf.
A144151 (ignoring first three columns (0<=k<=2), k-cycles on (n-1)-simplex).
Cf.
A167986 (k-cycles on graph of n-orthoplex).
A167984
Number of n-cycles on the graph of the regular 120-cell, 3 <= n <= 600.
Original entry on oeis.org
0, 0, 720, 0, 0, 3600, 2400, 4320, 28800, 35400, 64800, 284400, 540000, 1139400, 3708000, 8557200, 19677600, 55725120, 140359200, 346456800, 935942400, 2442469200, 6282571680
Offset: 3
a(5) = 720, because there are 720 5-cycles on the graph of the 120-cell.
Cycle polynomial is 720*x^5 + 3600*x^8 + 2400*x^9 + 4320*x^10 + 28800*x^11 + 35400*x^12 + 64800*x^13 + 284400*x^14 + 540000*x^15 + 1139400*x^16 + 3708000*x^17 + 8557200*x^18 + 19677600*x^19 + 55725120*x^20 + 140359200*x^21 + 346456800*x^22 + 935942400*x^23 + ...
Cf.
A167981 (2n-cycles on graph of the tesseract).
Cf.
A167982 (n-cycles on graph of 16-cell).
Cf.
A167983 (n-cycles on graph of 24-cell).
Cf.
A167985 (n-cycles on graph of 600-cell).
Cf.
A085452 (2k-cycles on graph of n-cube).
Cf.
A144151 (ignoring first three columns (0<=k<=2), k-cycles on (n-1)-simplex).
Cf.
A167986 (k-cycles on graph of n-orthoplex).
Cf.
A108997 (number of vertices n-steps from a given vertex on graph of 120-cell).
A167985
Number of n-cycles on the graph of the regular 600-cell, 3 <= n <= 120.
Original entry on oeis.org
1200, 5400, 29520, 187200, 1310400, 9813600, 77193600, 630538632, 5307656400
Offset: 3
a(3) = 1200, because there are 1200 3-cycles on the graph of the 600-cell.
Cycle polynomial is 1200*x^3 + 5400*x^4 + 29520*x^5 + 187200*x^6 + 1310400*x^7 + 9813600*x^8 + 77193600*x^9 + 630538632*x^10 + ...
Cf.
A167981 (2n-cycles on graph of the tesseract).
Cf.
A167982 (n-cycles on graph of 16-cell).
Cf.
A167983 (n-cycles on graph of 24-cell).
Cf.
A167984 (n-cycles on graph of 120-cell).
Cf.
A085452 (2k-cycles on graph of n-cube).
Cf.
A144151 (ignoring first three columns (0<=k<=2), k-cycles on (n-1)-simplex).
Cf.
A167986 (k-cycles on graph of n-orthoplex).
Cf.
A118785 (number of vertices n-steps from a given vertex on graph of the 600-cell).
A116723
We have one bead labeled i for every i=1, 2, ...; a(n) = number of necklaces that can be made using any subset of the first n beads.
Original entry on oeis.org
1, 2, 4, 8, 18, 53, 219, 1201, 8055, 62860, 556070, 5488126, 59740688, 710771367, 9174170117, 127661752527, 1904975488573, 30341995265190, 513771331467544, 9215499383109764, 174548332364311774, 3481204991988351785, 72920994844093191807, 1600596371590399672061
Offset: 0
Rodney Stephenson (rod.stephenson(AT)gmail.com), Mar 19 2008
For example for n=4 we have {}, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}, {1,2,4,3}, {1,3,2,4}.
-
a:= proc(n) option remember; `if`(n<4, 2^n, `if`(n=4, 18,
((n^3-4*n^2+n)*a(n-1) -(2*n-2)*(n^2-4*n+2)*a(n-2)
+n*(n-2)*(n-3)*a(n-3)) / ((n-1)*(n-4))))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jul 22 2016
-
a[n_] := 1 + n + n(n-1)/2 + Sum[n!/(2k(n-k)!), {k, 3, n}];
a /@ Range[0, 30] (* Jean-François Alcover, Nov 09 2020 *)
-
a(n) = 1 + n + n*(n-1)/2 + sum(k=3, n, n!/(2*k*(n-k)!)); \\ Michel Marcus, Nov 09 2020
A284947
Irregular triangle read by rows: coefficients of the cycle polynomial of the n-complete graph K_n.
Original entry on oeis.org
0, 0, 0, 1, 0, 0, 0, 4, 3, 0, 0, 0, 10, 15, 12, 0, 0, 0, 20, 45, 72, 60, 0, 0, 0, 35, 105, 252, 420, 360, 0, 0, 0, 56, 210, 672, 1680, 2880, 2520, 0, 0, 0, 84, 378, 1512, 5040, 12960, 22680, 20160, 0, 0, 0, 120, 630, 3024, 12600, 43200, 113400, 201600, 181440
Offset: 3
1: 0
2: 0
3: x^3
4: x^3 (4 + 3 x)
5: x^3 (10 + 15 x + 12 x^2)
6: x^3 (20 + 45 x + 72 x^2 + 60 x^3)
giving
1 3-cycle in K_3
4 3-cycles and 3 4-cycles in K_4
From _Peter Luschny_, Oct 22 2017: (Start)
Prepending six zeros leads to the regular triangle:
[0] 0
[1] 0, 0
[2] 0, 0, 0
[3] 0, 0, 0, 1
[4] 0, 0, 0, 4, 3
[5] 0, 0, 0, 10, 15, 12
[6] 0, 0, 0, 20, 45, 72, 60
[7] 0, 0, 0, 35, 105, 252, 420, 360
[8] 0, 0, 0, 56, 210, 672, 1680, 2880, 2520
[9] 0, 0, 0, 84, 378, 1512, 5040, 12960, 22680, 20160
(End)
Cf.
A144151 (generalization to include 1- and 2-"cycles").
-
A284947row := n -> seq(`if`(k<3, 0, pochhammer(3,k-3)*binomial(n,k)), k=0..n):
seq(A284947row(n), n=3..10); # Peter Luschny, Oct 22 2017
-
CoefficientList[Table[-(n*x*(2 - x + n*x - 2*HypergeometricPFQ[{1, 1, 1 - n}, {2}, -x]))/4, {n, 10}], x] // Flatten
A296546
Triangle read by rows T(n,k): number of undirected cycles of length k in the complete tripartite graph K_{n,n,n} (n = 1...; k = 3..3n).
Original entry on oeis.org
1, 8, 15, 24, 16, 27, 108, 324, 774, 1620, 2268, 1584, 64, 396, 1728, 7200, 27648, 87480, 232704, 476928, 663552, 463104, 125, 1050, 6000, 35800, 198000, 977400, 4392000, 17068320, 56376000, 151632000, 311040000, 430272000, 299289600
Offset: 1
Written as cycle polynomials:
x^3
8 x^3 + 15 x^4 + 24 x^5 + 16 x^6
27 x^3 + 108 x^4 + 324 x^5 + 774 x^6 + 1620 x^7 + 2268 x^8 + 1584 x^9
64 x^3 + 396 x^4 + 1728 x^5 + 7200 x^6 + 27648 x^7 + 87480 x^8 + 232704 x^9 + 476928 x^10 + 663552 x^11 + 463104 x^12
giving the array
1
8, 15, 24, 16
27, 108, 324, 774, 1620, 2268, 1584
64, 396, 1728, 7200, 27648, 87480, 232704, 476928, 663552, 463104
Cf.
A234616 (number of undirected cycles in K_{n,n,n}).
Cf.
A144151 (cycle polynomial coefficients of complete graph K_n).
Cf.
A291909 (cycle polynomial coefficients of complete bipartite graph K_{n,n}).
-
Table[Tally[Length /@ FindCycle[CompleteGraph[{n, n, n}], Infinity, All]][[All, 2]], {n, 4}] // Flatten
Showing 1-9 of 9 results.
Comments