A167987
Number of (undirected) cycles in the graph of the n-orthoplex, n>=2.
Original entry on oeis.org
1, 63, 2766, 194650, 21086055, 3257119761, 679314442828, 183842034768036, 62630787876947325, 26224409462275175635, 13236607762537219815546, 7925653200467421739217118, 5554198822066977588903819331, 4503367772662184077396436475525, 4182811121982123218357983540881240
Offset: 2
a(3) = 63, because in dimension n=3, the orthoplex is the octahedron, which has 63 cycles in its graph.
-
b:= func< n,k,j | (-1)^j*Binomial(n,j)*Binomial(2*(n-j),k-2*j)*2^(j-1)*Factorial(k-j-1) >;
A167986:= func< n,k | (&+[b(n,k,j): j in [0..Floor(k/2)]]) >;
A167987:= func< n | (&+[A167986(n,k): k in [3..2*n]]) >;
[A167987(n): n in [2..30]]; // G. C. Greubel, Jan 17 2023
-
a[n_]:= Sum[Sum[(-1)^j*Binomial[n, j]*Binomial[2*(n-j), k-2*j]*2^j*(k - j-1)!, {j, 0, k/2}], {k, 3, 2 n}]/2; Array[a, 15, 2] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
-
a(n)=sum(k=3,2*n, sum(j=0,k\2, (-1)^j*binomial(n,j)*binomial(2*(n-j),k-2*j)*2^j*(k-j-1)!))/2; \\ Andrew Howroyd, May 09 2017
-
def A167986(n,k): return simplify(binomial(2*n, k)*gamma(k)*hypergeometric([(1-k)/2, -k/2], [1-k, 1/2 -n], -2)/2)
@CachedFunction
def A167987(n): return sum(A167986(n,k) for k in range(3,2*n+1))
[A167987(n) for n in range(2,31)] # G. C. Greubel, Jan 17 2023
A167981
Number of 2n-cycles on the graph of the tesseract, 2 <= n <= 8.
Original entry on oeis.org
24, 128, 696, 2112, 5024, 5736, 1344
Offset: 2
a(2) = 24 because there are 24 4-cycles on the graph of the tesseract.
The cycle polynomial is 24*x^4 + 128*x^6 + 696*x^8 + 2112*x^10 + 5024*x^12 + 5376*x^14 + 1344*x^16.
Cf.
A167982 (n-cycles on graph of 16-cell).
Cf.
A167983 (n-cycles on graph of 24-cell).
Cf.
A167984 (n-cycles on graph of 120-cell).
Cf.
A167985 (n-cycles on graph of 600-cell).
Cf.
A085452 (2k-cycles on graph of n-cube).
Cf.
A144151 (ignoring first three columns (0<=k<=2), k-cycles on (n-1)-simplex).
Cf.
A167986 (k-cycles on graph of n-orthoplex).
A167982
Number of n-cycles on the graph of the regular 16-cell, 3 <= n <= 8.
Original entry on oeis.org
32, 102, 288, 640, 960, 744
Offset: 3
a(3) = 32, because there are 32 3-cycles on the graph of the 16-cell.
Cycle polynomial is 32*x^3 + 102*x^4 + 288*x^5 + 640*x^6 + 960*x^7 + 744*x^8.
Cf.
A167981 (2n-cycles on graph of the tesseract).
Cf.
A167983 (n-cycles on graph of 24-cell).
Cf.
A167984 (n-cycles on graph of 120-cell).
Cf.
A167985 (n-cycles on graph of 600-cell).
Cf.
A085452 (2k-cycles on graph of n-cube).
Cf.
A144151 (ignoring first three columns (0<=k<=2), k-cycles on (n-1)-simplex).
Cf.
A167986 (k-cycles on graph of n-orthoplex).
A167983
Number of n-cycles on the graph of the regular 24-cell, 3 <= n <= 24.
Original entry on oeis.org
96, 360, 1440, 7120, 37728, 196488, 974592, 4536000, 19934208, 82689264, 322437312, 1171745280, 3924079104, 11964375936, 32761139328, 79244294016, 165800420352, 291640320576, 413774810112, 443415854592, 318534709248, 114869295744
Offset: 3
a(3) = 96, because there are 96 3-cycles on the graph of the 24-cell.
Cycle polynomial is 96*x^3 + 360*x^4 + 1440*x^5 + 7120*x^6 + 37728*x^7 + 196488*x^8 + 974592*x^9 + 4536000*x^10 + 19934208*x^11 + 82689264*x^12 + 322437312*x^13 + 1171745280*x^14 + 3924079104*x^15 + 11964375936*x^16 + 32761139328*x^17 + 79244294016*x^18 + 165800420352*x^19 + 291640320576*x^20 + 413774810112*x^21 + 443415854592*x^22 + 318534709248*x^23 + 114869295744*x^24.
Cf.
A167981 (2n-cycles on graph of the tesseract).
Cf.
A167982 (n-cycles on graph of 16-cell).
Cf.
A167984 (n-cycles on graph of 120-cell).
Cf.
A167985 (n-cycles on graph of 600-cell).
Cf.
A085452 (2k-cycles on graph of n-cube).
Cf.
A144151 (ignoring first three columns (0<=k<=2), k-cycles on (n-1)-simplex).
Cf.
A167986 (k-cycles on graph of n-orthoplex).
A167984
Number of n-cycles on the graph of the regular 120-cell, 3 <= n <= 600.
Original entry on oeis.org
0, 0, 720, 0, 0, 3600, 2400, 4320, 28800, 35400, 64800, 284400, 540000, 1139400, 3708000, 8557200, 19677600, 55725120, 140359200, 346456800, 935942400, 2442469200, 6282571680
Offset: 3
a(5) = 720, because there are 720 5-cycles on the graph of the 120-cell.
Cycle polynomial is 720*x^5 + 3600*x^8 + 2400*x^9 + 4320*x^10 + 28800*x^11 + 35400*x^12 + 64800*x^13 + 284400*x^14 + 540000*x^15 + 1139400*x^16 + 3708000*x^17 + 8557200*x^18 + 19677600*x^19 + 55725120*x^20 + 140359200*x^21 + 346456800*x^22 + 935942400*x^23 + ...
Cf.
A167981 (2n-cycles on graph of the tesseract).
Cf.
A167982 (n-cycles on graph of 16-cell).
Cf.
A167983 (n-cycles on graph of 24-cell).
Cf.
A167985 (n-cycles on graph of 600-cell).
Cf.
A085452 (2k-cycles on graph of n-cube).
Cf.
A144151 (ignoring first three columns (0<=k<=2), k-cycles on (n-1)-simplex).
Cf.
A167986 (k-cycles on graph of n-orthoplex).
Cf.
A108997 (number of vertices n-steps from a given vertex on graph of 120-cell).
A167985
Number of n-cycles on the graph of the regular 600-cell, 3 <= n <= 120.
Original entry on oeis.org
1200, 5400, 29520, 187200, 1310400, 9813600, 77193600, 630538632, 5307656400
Offset: 3
a(3) = 1200, because there are 1200 3-cycles on the graph of the 600-cell.
Cycle polynomial is 1200*x^3 + 5400*x^4 + 29520*x^5 + 187200*x^6 + 1310400*x^7 + 9813600*x^8 + 77193600*x^9 + 630538632*x^10 + ...
Cf.
A167981 (2n-cycles on graph of the tesseract).
Cf.
A167982 (n-cycles on graph of 16-cell).
Cf.
A167983 (n-cycles on graph of 24-cell).
Cf.
A167984 (n-cycles on graph of 120-cell).
Cf.
A085452 (2k-cycles on graph of n-cube).
Cf.
A144151 (ignoring first three columns (0<=k<=2), k-cycles on (n-1)-simplex).
Cf.
A167986 (k-cycles on graph of n-orthoplex).
Cf.
A118785 (number of vertices n-steps from a given vertex on graph of the 600-cell).
Showing 1-6 of 6 results.
Comments