A284982 Triangle read by rows: coefficients of the Laplacian polynomial of the n-cycle graph C_n.
0, -1, 0, -4, 1, 0, -9, 6, -1, 0, -16, 20, -8, 1, 0, -25, 50, -35, 10, -1, 0, -36, 105, -112, 54, -12, 1, 0, -49, 196, -294, 210, -77, 14, -1, 0, -64, 336, -672, 660, -352, 104, -16, 1, 0, -81, 540, -1386, 1782, -1287, 546, -135, 18, -1, 0, -100, 825, -2640, 4290, -4004, 2275, -800, 170, -20, 1
Offset: 1
Examples
First few polynomials are -x -4*x + x^2 -9*x + 6*x^2 - x^3 which give the triangle of coefficients: 0, -1; 0, -4, 1; 0, -9, 6, -1; ...
Links
- Eric Weisstein's World of Mathematics, Cycle Graph
- Eric Weisstein's World of Mathematics, Laplacian Polynomial
Crossrefs
Cf. A127677 (opposite signs and rows begin with +/2).
Programs
-
Mathematica
CoefficientList[LucasL[2 Range[10], Sqrt[-x]] - 2, x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *) CoefficientList[2 (ChebyshevT[Range[10], 1 - x/2] - 1), x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *) CoefficientList[FunctionExpand[2 (Cos[Range[10] ArcCos[1 - x/2]] - 1)], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *) CoefficientList[LinearRecurrence[{3 - x, -3 + x, 1}, {-x, (-4 + x) x, -(-3 + x)^2 x}, 10], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
Comments