A284989 Triangle T(n,k) read by rows: the number of n X n {0,1} matrices with trace k where each row sum and each column sum is 2.
1, 0, 0, 0, 0, 1, 1, 0, 3, 2, 9, 24, 24, 24, 9, 216, 540, 610, 420, 210, 44, 7570, 18000, 20175, 13720, 6300, 1920, 265, 357435, 829920, 909741, 617610, 284235, 91140, 19005, 1854, 22040361, 50223600, 54295528, 36663312, 17072790, 5679184, 1337280, 203952, 14833
Offset: 0
Examples
0: 1 1: 0 0 2: 0 0 1 3: 1 0 3 2 4: 9 24 24 24 9 5: 216 540 610 420 210 44 6: 7570 18000 20175 13720 6300 1920 265 7: 357435 829920 909741 617610 284235 91140 19005 1854 8: 22040361 50223600 54295528 36663312 17072790 5679184 1337280 203952 14833
Links
Crossrefs
Programs
-
PARI
P(n, t='t) = { my(z=vector(n, k, eval(Str("z", k))), s1=sum(k=1, #z, z[k]), s2=sum(k=1, #z, z[k]^2), s12=(s1^2 - s2)/2, f=vector(n, k, t*(s12 - z[k]*(s1 - z[k])) + z[k]*(s1 - z[k])), g=1); for (i=1, n, g *= f[i]; for(j=1, n, g=substpol(g, z[j]^3, 0))); for (k=1, n, g=polcoef(g, 2, z[k])); g; }; seq(N) = concat([[1], [0, 0], [0, 0, 1]], apply(n->Vec(P(n)), [3..N])); concat(seq(8)) \\ Gheorghe Coserea, Dec 21 2018
Formula
Let z1..zn be n variables and s1 = Sum_{k=1..n} zk, s2 = Sum_{k=1..n} zk^2, s12 = (s1^2 - s2)/2, fk = t*(s12 - zk*(s1 - zk)) + zk*(s1 - zk) for k=1..n, P_n(t) = [(z1..zn)^2] Product_{k=1..n} fk. Then P_n(t) = Sum_{k=0..n} T(n,k)*t^(n-k), n >= 3. - Gheorghe Coserea, Dec 21 2018