cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284989 Triangle T(n,k) read by rows: the number of n X n {0,1} matrices with trace k where each row sum and each column sum is 2.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 0, 3, 2, 9, 24, 24, 24, 9, 216, 540, 610, 420, 210, 44, 7570, 18000, 20175, 13720, 6300, 1920, 265, 357435, 829920, 909741, 617610, 284235, 91140, 19005, 1854, 22040361, 50223600, 54295528, 36663312, 17072790, 5679184, 1337280, 203952, 14833
Offset: 0

Views

Author

R. J. Mathar, Apr 07 2017

Keywords

Examples

			0:         1
1:         0        0
2:         0        0        1
3:         1        0        3        2
4:         9       24       24       24        9
5:       216      540      610      420      210      44
6:      7570    18000    20175    13720     6300    1920     265
7:    357435   829920   909741   617610   284235   91140   19005   1854
8:  22040361 50223600 54295528 36663312 17072790 5679184 1337280 203952 14833
		

Crossrefs

Cf. A001499 (row sums), A000166 (diagonal), A007107 (column 0).

Programs

  • PARI
    P(n, t='t) = {
      my(z=vector(n, k, eval(Str("z", k))),
         s1=sum(k=1, #z, z[k]), s2=sum(k=1, #z, z[k]^2), s12=(s1^2 - s2)/2,
         f=vector(n, k, t*(s12 - z[k]*(s1 - z[k])) + z[k]*(s1 - z[k])), g=1);
      for (i=1, n, g *= f[i]; for(j=1, n, g=substpol(g, z[j]^3, 0)));
      for (k=1, n, g=polcoef(g, 2, z[k]));
      g;
    };
    seq(N) = concat([[1], [0, 0], [0, 0, 1]], apply(n->Vec(P(n)), [3..N]));
    concat(seq(8)) \\ Gheorghe Coserea, Dec 21 2018

Formula

Let z1..zn be n variables and s1 = Sum_{k=1..n} zk, s2 = Sum_{k=1..n} zk^2, s12 = (s1^2 - s2)/2, fk = t*(s12 - zk*(s1 - zk)) + zk*(s1 - zk) for k=1..n, P_n(t) = [(z1..zn)^2] Product_{k=1..n} fk. Then P_n(t) = Sum_{k=0..n} T(n,k)*t^(n-k), n >= 3. - Gheorghe Coserea, Dec 21 2018