cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284992 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1+x^j)^(j^k) in powers of x.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 5, 2, 1, 1, 8, 13, 8, 3, 1, 1, 16, 35, 31, 16, 4, 1, 1, 32, 97, 119, 83, 28, 5, 1, 1, 64, 275, 457, 433, 201, 49, 6, 1, 1, 128, 793, 1763, 2297, 1476, 487, 83, 8, 1, 1, 256, 2315, 6841, 12421, 11113, 4962, 1141, 142, 10, 1, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 07 2017

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,     1,      1,       1,        1, ...
  1,  1,   1,    1,     1,      1,       1,        1, ...
  1,  2,   4,    8,    16,     32,      64,      128, ...
  2,  5,  13,   35,    97,    275,     793,     2315, ...
  2,  8,  31,  119,   457,   1763,    6841,    26699, ...
  3, 16,  83,  433,  2297,  12421,   68393,   382573, ...
  4, 28, 201, 1476, 11113,  85808,  678101,  5466916, ...
  5, 49, 487, 4962, 52049, 561074, 6189117, 69540142, ...
		

Crossrefs

Columns k=0-5 give A000009, A026007, A027998, A248882, A248883, A248884.
Rows (0+1),2-3 give: A000012, A000079, A007689.
Main diagonal gives A270917.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*binomial(i^k, j), j=0..n/i)))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);  # Alois P. Heinz, Oct 16 2017
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
         Sum[b[n - i*j, i - 1, k]*Binomial[i^k, j], {j, 0, n/i}]]];
    A[n_, k_] := b[n, n, k];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 10 2021, after Alois P. Heinz *)

Formula

G.f. of column k: Product_{j>=1} (1+x^j)^(j^k).