cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A175768 Primes of the form k * b^b + 1, with b > 1.

Original entry on oeis.org

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 163, 173, 181, 193, 197, 229, 233, 241, 257, 269, 271, 277, 281, 293, 313, 317, 337, 349, 353, 373, 379, 389, 397, 401, 409, 421, 433, 449, 457, 461, 487, 509, 521, 541, 557, 569, 577, 593, 601, 613
Offset: 1

Views

Author

Kevin Batista (kevin762401(AT)yahoo.com), Sep 01 2010

Keywords

Comments

Without the restriction on b, the sequence would be identical to A000040.

Examples

			For a(3), 4 * 2^2 + 1 = 17, which is prime.
From _Seiichi Manyama_, Mar 27 2018: (Start)
   n | a(n)
  ---+----------------------------------
   1 |   5 =  1 * 2^2 + 1.
   2 |  13 =  3 * 2^2 + 1.
   3 |  17 =  4 * 2^2 + 1.
   4 |  29 =  7 * 2^2 + 1.
   5 |  37 =  9 * 2^2 + 1.
   6 |  41 = 10 * 2^2 + 1.
   7 |  53 = 13 * 2^2 + 1.
   8 |  61 = 15 * 2^2 + 1.
   9 |  73 = 18 * 2^2 + 1.
  10 |  89 = 22 * 2^2 + 1.
  11 |  97 = 24 * 2^2 + 1.
  12 | 101 = 25 * 2^2 + 1.
  13 | 109 = 27 * 2^2 + 1 = 4 * 3^3 + 1. (End)
		

Crossrefs

Programs

  • Mathematica
    Take[ Select[ Union@ Flatten@ Table[ k*b^b + 1, {b, 2, 20}, {k, 148}], PrimeQ], 55] (* Robert G. Wilson v, Sep 01 2010 *)
  • PARI
    isA175768(n)=if(!isprime(n),return(0)); if(n%4==1||n%27==1,return(1)); forprime(b=5,log(n)/log(7),if(n%(b^b)==1,return(1)));0 \\ Charles R Greathouse IV, Sep 02 2010

Extensions

Corrected and edited by Charles R Greathouse IV, Sep 02 2010

A285016 Primes of the form p*b^b - 1, where p is a prime and b>1.

Original entry on oeis.org

7, 11, 19, 43, 53, 67, 163, 211, 283, 331, 523, 547, 691, 787, 907, 1051, 1123, 1171, 1279, 1531, 1723, 1867, 2011, 2083, 2251, 2347, 2371, 2467, 2707, 2731, 2803, 2971, 3187, 3307, 3547, 3643, 3907, 3931, 4051, 4243, 4363, 4603, 4651, 4723, 5107, 5227
Offset: 1

Views

Author

Vincenzo Librandi, May 12 2017

Keywords

Examples

			a(1) = 2*(2^2)-1 = 7.
a(2) = 3*(2^2)-1 = 11.
a(3) = 5*(2^2)-1 = 19.
a(4) = 11*(2^2)-1 = 43.
		

Crossrefs

Programs

  • Mathematica
    nmax=10^4; pimax=PrimePi[nmax]; bmax=1;While[(bmax+1)^(bmax+1)<=nmax,bmax++]; Select[Union@Flatten@Table[Prime[pi] b^b-1,{b,2,bmax},{pi,pimax}],PrimeQ[#]&&#<=nmax&]
  • PARI
    is(n)=for(b=2,oo, my(B=b^b); if((n+1)%B==0 && isprime((n+1)/B), return(isprime(n))); if(2*B+1>n, return(0))) \\ Charles R Greathouse IV, Jun 16 2022
    
  • PARI
    list(lim)=my(v=List()); lim\=1; for(b=2,oo, my(p=2*b^b-1); if(p>lim, break); if(isprime(p), listput(v,p))); forstep(b=2,oo,2, my(B=b^b); if(3*B-1>lim, break); forprime(q=3,(lim+1)\B, my(p=q*B-1); if(isprime(p), listput(v,p)))); Set(v) \\ Charles R Greathouse IV, Jun 16 2022

A286658 Primes of the form p*b^b + 1, where p is a prime and b>1.

Original entry on oeis.org

13, 29, 53, 149, 173, 269, 293, 317, 389, 509, 557, 653, 769, 773, 797, 1109, 1229, 1493, 1637, 1733, 1949, 1997, 2309, 2477, 2693, 2837, 2909, 2957, 3329, 3413, 3533, 3677, 3989, 4133, 4157, 4253, 4349, 4373, 4493, 4517, 5189, 5309, 5693, 5717, 5813, 6173
Offset: 1

Views

Author

Vincenzo Librandi, May 12 2017

Keywords

Examples

			a(1) = 3*(2^2)+1 = 13.
a(2) = 7*(2^2)+1 = 29.
a(3) = 13*(2^2)+1 = 53.
		

Crossrefs

Programs

  • Maple
    N:= 10000: # for all terms <= N
    Res:= NULL:
    P:= select(isprime, [2,seq(i,i=3..N/4,2)]):
    for b from 2  do
      q:= b^b; if q > N/2 then break fi;
      for i from 1 to nops(P) do
         x:= P[i]*q+1;
         if x > N then break fi;
         if isprime(x) then Res:= Res, x fi;
    od od:
    sort(convert({Res},list)); # Robert Israel, Nov 12 2019
  • Mathematica
    nmax=10^4; pimax=PrimePi[nmax]; bmax=1;While[(bmax+1)^(bmax+1)<=nmax,bmax++];Select[Union@Flatten@Table[Prime[pi] b^b+1,{b,2,bmax},{pi,pimax}],PrimeQ[#]&&#<=nmax&]
  • PARI
    list(lim)=my(v=List()); lim\=1; for(b=2,oo, my(p=2*b^b+1); if(p>lim, break); if(isprime(p), listput(v,p))); forstep(b=2,oo,2, my(B=b^b); if(3*B+1>lim, break); forprime(q=3,(lim-1)\B, my(p=q*B+1); if(isprime(p), listput(v,p)))); Set(v) \\ Charles R Greathouse IV, Jun 16 2022
Showing 1-3 of 3 results.