cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285229 Expansion of g.f. Product_{j>=1} 1/(1-y*x^j)^A000009(j), triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 3, 1, 1, 0, 3, 4, 3, 1, 1, 0, 4, 8, 5, 3, 1, 1, 0, 5, 11, 10, 5, 3, 1, 1, 0, 6, 18, 16, 11, 5, 3, 1, 1, 0, 8, 25, 29, 18, 11, 5, 3, 1, 1, 0, 10, 38, 44, 34, 19, 11, 5, 3, 1, 1, 0, 12, 52, 72, 55, 36, 19, 11, 5, 3, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 14 2017

Keywords

Examples

			T(n,k) is the number of multisets of exactly k partitions of positive integers into distinct parts with total sum of parts equal to n.
T(4,1) = 2: {4}, {31}.
T(4,2) = 3: {3,1}, {21,1}, {2,2}.
T(4,3) = 1: {2,1,1}.
T(4,4) = 1: {1,1,1,1}.
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  1,  1;
  0,  2,  1,   1;
  0,  2,  3,   1,  1;
  0,  3,  4,   3,  1,  1;
  0,  4,  8,   5,  3,  1,  1;
  0,  5, 11,  10,  5,  3,  1,  1;
  0,  6, 18,  16, 11,  5,  3,  1,  1;
  0,  8, 25,  29, 18, 11,  5,  3,  1, 1;
  0, 10, 38,  44, 34, 19, 11,  5,  3, 1, 1;
  0, 12, 52,  72, 55, 36, 19, 11,  5, 3, 1, 1;
  0, 15, 75, 110, 96, 60, 37, 19, 11, 5, 3, 1, 1;
  ...
		

Crossrefs

Columns k=0..10 give: A000007, A000009 (for n>0), A320787, A320788, A320789, A320790, A320791, A320792, A320793, A320794, A320795.
Row sums give A089259.
T(2n,n) give A285230.

Programs

  • Maple
    with(numtheory):
    g:= proc(n) option remember; `if`(n=0, 1, add(add(
          `if`(d::odd, d, 0), d=divisors(j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, i) option remember; expand(
          `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*
           x^j*binomial(g(i)+j-1, j), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
    seq(T(n), n=0..16);
  • Mathematica
    L[n_] := QPochhammer[x^2]/QPochhammer[x] + O[x]^n;
    A[n_] := Module[{c = L[n]}, CoefficientList[#, y]& /@ CoefficientList[ 1/Product[(1 - x^k*y + O[x]^n)^SeriesCoefficient[c, {x, 0, k}], {k, 1, n}], x]];
    A[12] // Flatten (* Jean-François Alcover, Jan 19 2020, after Andrew Howroyd *)
    g[n_] := g[n] = If[n==0, 1, Sum[Sum[If[OddQ[d], d, 0], {d, Divisors[j]}]* g[n - j], {j, 1, n}]/n];
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[b[n - i*j, i - 1]*x^j* Binomial[g[i] + j - 1, j], {j, 0, n/i}]]];
    T[n_] := CoefficientList[b[n, n] + O[x]^(n+1), x];
    T /@ Range[0, 16] // Flatten (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
  • PARI
    L(n)={eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))}
    A(n)={my(c=L(n), v=Vec(1/prod(k=1, n, (1 - x^k*y + O(x*x^n))^polcoef(c,k)))); vector(#v, n, Vecrev(v[n],n))}
    {my(T=A(12)); for(n=1, #T, print(T[n]))} \\ Andrew Howroyd, Dec 29 2019

Formula

G.f.: Product_{j>=1} 1/(1-y*x^j)^A000009(j).