A285229 Expansion of g.f. Product_{j>=1} 1/(1-y*x^j)^A000009(j), triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 3, 1, 1, 0, 3, 4, 3, 1, 1, 0, 4, 8, 5, 3, 1, 1, 0, 5, 11, 10, 5, 3, 1, 1, 0, 6, 18, 16, 11, 5, 3, 1, 1, 0, 8, 25, 29, 18, 11, 5, 3, 1, 1, 0, 10, 38, 44, 34, 19, 11, 5, 3, 1, 1, 0, 12, 52, 72, 55, 36, 19, 11, 5, 3, 1, 1
Offset: 0
Examples
T(n,k) is the number of multisets of exactly k partitions of positive integers into distinct parts with total sum of parts equal to n. T(4,1) = 2: {4}, {31}. T(4,2) = 3: {3,1}, {21,1}, {2,2}. T(4,3) = 1: {2,1,1}. T(4,4) = 1: {1,1,1,1}. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 2, 1, 1; 0, 2, 3, 1, 1; 0, 3, 4, 3, 1, 1; 0, 4, 8, 5, 3, 1, 1; 0, 5, 11, 10, 5, 3, 1, 1; 0, 6, 18, 16, 11, 5, 3, 1, 1; 0, 8, 25, 29, 18, 11, 5, 3, 1, 1; 0, 10, 38, 44, 34, 19, 11, 5, 3, 1, 1; 0, 12, 52, 72, 55, 36, 19, 11, 5, 3, 1, 1; 0, 15, 75, 110, 96, 60, 37, 19, 11, 5, 3, 1, 1; ...
Links
Crossrefs
Programs
-
Maple
with(numtheory): g:= proc(n) option remember; `if`(n=0, 1, add(add( `if`(d::odd, d, 0), d=divisors(j))*g(n-j), j=1..n)/n) end: b:= proc(n, i) option remember; expand( `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)* x^j*binomial(g(i)+j-1, j), j=0..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)): seq(T(n), n=0..16);
-
Mathematica
L[n_] := QPochhammer[x^2]/QPochhammer[x] + O[x]^n; A[n_] := Module[{c = L[n]}, CoefficientList[#, y]& /@ CoefficientList[ 1/Product[(1 - x^k*y + O[x]^n)^SeriesCoefficient[c, {x, 0, k}], {k, 1, n}], x]]; A[12] // Flatten (* Jean-François Alcover, Jan 19 2020, after Andrew Howroyd *) g[n_] := g[n] = If[n==0, 1, Sum[Sum[If[OddQ[d], d, 0], {d, Divisors[j]}]* g[n - j], {j, 1, n}]/n]; b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[b[n - i*j, i - 1]*x^j* Binomial[g[i] + j - 1, j], {j, 0, n/i}]]]; T[n_] := CoefficientList[b[n, n] + O[x]^(n+1), x]; T /@ Range[0, 16] // Flatten (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
-
PARI
L(n)={eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))} A(n)={my(c=L(n), v=Vec(1/prod(k=1, n, (1 - x^k*y + O(x*x^n))^polcoef(c,k)))); vector(#v, n, Vecrev(v[n],n))} {my(T=A(12)); for(n=1, #T, print(T[n]))} \\ Andrew Howroyd, Dec 29 2019
Formula
G.f.: Product_{j>=1} 1/(1-y*x^j)^A000009(j).