A285282 Numbers n such that n^2 + 1 is 13-smooth.
1, 2, 3, 5, 7, 8, 18, 57, 239
Offset: 1
Examples
For n = 8, a(8)^2 + 1 = 57^2 + 1 = 3250 = 2*5^3*13.
References
- W. Ljunggren, Zur Theorie der Gleichung x^2 + 1 = 2y^4, Avh. Norsk Vid. Akad. Oslo. 1(5) (1942), 1--27.
Links
- A. Schinzel, On two theorems of Gelfond and some of their applications, Acta Arithmetica 13 (1967-1968), 177--236.
- Ray Steiner, Simplifying the Solution of Ljunggren's Equation X^2 + 1 = 2Y^4, J. Number Theory 37 (1991), 123--132, more accesible proof of Ljunggren's result.
- Carl Størmer, Quelques théorèmes sur l'équation de Pell x^2 - Dy^2 = +-1 et leurs applications (in French), Skrifter Videnskabs-selskabet (Christiania), Mat.-Naturv. Kl. I Nr. 2 (1897), 48 pp.
Programs
-
Mathematica
Select[Range[1000], FactorInteger[#^2 + 1][[-1, 1]] <= 13&] (* Jean-François Alcover, May 17 2017 *)
-
PARI
for(n=1, 9e6, if(vecmax(factor(n^2+1)[, 1])<=13, print1(n", ")))
-
Python
from sympy import primefactors def ok(n): return max(primefactors(n**2 + 1))<=13 # Indranil Ghosh, Apr 16 2017
Comments