A285362 Sum T(n,k) of the entries in the k-th blocks of all set partitions of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
1, 4, 2, 15, 12, 3, 60, 58, 28, 4, 262, 273, 185, 55, 5, 1243, 1329, 1094, 495, 96, 6, 6358, 6839, 6293, 3757, 1148, 154, 7, 34835, 37423, 36619, 26421, 11122, 2380, 232, 8, 203307, 217606, 219931, 180482, 96454, 28975, 4518, 333, 9, 1257913, 1340597, 1376929, 1230737, 787959, 308127, 67898, 7995, 460, 10
Offset: 1
Examples
T(3,2) = 12 because the sum of the entries in the second blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 0+3+2+5+2 = 12. Triangle T(n,k) begins: 1; 4, 2; 15, 12, 3; 60, 58, 28, 4; 262, 273, 185, 55, 5; 1243, 1329, 1094, 495, 96, 6; 6358, 6839, 6293, 3757, 1148, 154, 7; 34835, 37423, 36619, 26421, 11122, 2380, 232, 8; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Maple
T:= proc(h) option remember; local b; b:= proc(n, m) option remember; `if`(n=0, [1, 0], add((p-> p +[0, (h-n+1)*p[1]*x^j])(b(n-1, max(m, j))), j=1..m+1)) end: (p-> seq(coeff(p, x, i), i=1..n))(b(h, 0)[2]) end: seq(T(n), n=1..12);
-
Mathematica
T[h_] := T[h] = Module[{b}, b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[# + {0, (h - n + 1)*#[[1]]*x^j}&[b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; Table[Coefficient[#, x, i], {i, 1, n}]&[b[h, 0][[2]]]]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)