A285362
Sum T(n,k) of the entries in the k-th blocks of all set partitions of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 4, 2, 15, 12, 3, 60, 58, 28, 4, 262, 273, 185, 55, 5, 1243, 1329, 1094, 495, 96, 6, 6358, 6839, 6293, 3757, 1148, 154, 7, 34835, 37423, 36619, 26421, 11122, 2380, 232, 8, 203307, 217606, 219931, 180482, 96454, 28975, 4518, 333, 9, 1257913, 1340597, 1376929, 1230737, 787959, 308127, 67898, 7995, 460, 10
Offset: 1
T(3,2) = 12 because the sum of the entries in the second blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 0+3+2+5+2 = 12.
Triangle T(n,k) begins:
1;
4, 2;
15, 12, 3;
60, 58, 28, 4;
262, 273, 185, 55, 5;
1243, 1329, 1094, 495, 96, 6;
6358, 6839, 6293, 3757, 1148, 154, 7;
34835, 37423, 36619, 26421, 11122, 2380, 232, 8;
...
Main diagonal and first lower diagonal give:
A000027,
A006000 (for n>0).
-
T:= proc(h) option remember; local b; b:=
proc(n, m) option remember; `if`(n=0, [1, 0], add((p-> p
+[0, (h-n+1)*p[1]*x^j])(b(n-1, max(m, j))), j=1..m+1))
end: (p-> seq(coeff(p, x, i), i=1..n))(b(h, 0)[2])
end:
seq(T(n), n=1..12);
-
T[h_] := T[h] = Module[{b}, b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[# + {0, (h - n + 1)*#[[1]]*x^j}&[b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; Table[Coefficient[#, x, i], {i, 1, n}]&[b[h, 0][[2]]]];
Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
A284816
Sum of entries in the first cycles of all permutations of [n].
Original entry on oeis.org
1, 4, 21, 132, 960, 7920, 73080, 745920, 8346240, 101606400, 1337212800, 18920563200, 286442956800, 4620449433600, 79114299264000, 1433211107328000, 27387931963392000, 550604138692608000, 11617107089043456000, 256671161862635520000, 5926549291918295040000
Offset: 1
a(3) = 21 because the sum of the entries in the first cycles of all permutations of [3] ((123), (132), (12)(3), (13)(2), (1)(23), (1)(2)(3)) is 6+6+3+4+1+1 = 21.
-
a:= n-> n!*(n*(n+1)-(n-1)*(n+2)/2)/2:
seq(a(n), n=1..25);
# second Maple program:
a:= proc(n) option remember; `if`(n<2, n,
(n^2+n+2)*n*a(n-1)/(n^2-n+2))
end:
seq(a(n), n=1..25);
A285424
Sum of the entries in the last blocks of all set partitions of [n].
Original entry on oeis.org
1, 5, 19, 75, 323, 1512, 7630, 41245, 237573, 1451359, 9365361, 63604596, 453206838, 3378581609, 26285755211, 212953670251, 1792896572319, 15658150745252, 141619251656826, 1324477898999161, 12791059496663293, 127395689514237279, 1307010496324272157
Offset: 1
a(3) = 19 because the sum of the entries in the last blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 6+3+2+5+3 = 19.
-
a:= proc(h) option remember; local b; b:=
proc(n, m, s) option remember; `if`(n=0, s,
add(b(n-1, max(m, j), `if`(j
-
a[h_] := a[h] = Module[{b}, b[n_, m_, s_] := b[n, m, s] = If[n == 0, s, Sum[b[n-1, Max[m, j], If[j < m, s, h - n + 1 + If[j == m, s, 0]]], {j, 1, m + 1}]]; b[h, 0, 0]];
Array[a, 25] (* Jean-François Alcover, May 22 2018, translated from Maple *)
Showing 1-3 of 3 results.
Comments