A285381 G.f.: 1/(1 - 1!*x/(1 - 2!*x^2/(1 - 3!*x^3/(1 - 4!*x^4/(1 - 5!*x^5/(1 - 6!*x^6/(1 - ...))))))), a continued fraction.
1, 1, 1, 3, 5, 11, 33, 67, 169, 435, 1265, 3035, 8025, 22243, 60721, 191307, 491657, 1404371, 4089633, 12183835, 36872377, 126189219, 350136977, 1062359147, 3386475177, 10757830387, 36121721857, 120817807419, 482847966617, 1391650703939, 4654331013489
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 11*x^5 + 33*x^6 + 67*x^7 + 169*x^8 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..100
Programs
-
Mathematica
nmax = 30; CoefficientList[Series[1/(1 + ContinuedFractionK[-k! x^k, 1, {k, 1, nmax}]), {x, 0, nmax}], x]
-
PARI
a(n) = my(A=1+O(x)); for(i=1, n, A=1-(n-i+1)!*x^(n-i+1)/A); polcoef(1/A, n); \\ Seiichi Manyama, Apr 16 2021