cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A285391 Start with a single cell at coordinates (0, 0), then iteratively subdivide the grid into 3 X 3 cells and remove the cells whose sum of modulo 2 coordinates is 2; a(n) is the number of cells after n iterations.

Original entry on oeis.org

1, 8, 60, 444, 3276, 24156, 178092, 1312956, 9679500, 71360028, 526086252, 3878455932, 28593068364, 210796144092, 1554048476460, 11456882559036, 84463361313804, 622687661115804, 4590628614276588, 33843405595099644, 249503106984577740, 1839407095720003932
Offset: 0

Views

Author

Peter Karpov, Apr 18 2017

Keywords

Comments

Cell configuration converges to a fractal carpet with dimension 1.818...

Crossrefs

Programs

  • Magma
    [n le 2 select 8^(n-1) else 9*Self(n-1) - 12*Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 11 2021
    
  • Mathematica
    LinearRecurrence[{9, -12}, {1, 8}, 16]
  • PARI
    Vec((1 - x) / (1 - 9*x + 12*x^2) + O(x^30)) \\ Colin Barker, Apr 18 2017
    
  • Sage
    [(2*sqrt(3))^(n-1)*( 2*sqrt(3)*chebyshev_U(n, 9/(4*sqrt(3))) - chebyshev_U(n-1, 9/(4*sqrt(3))) ) for n in (0..30)] # G. C. Greubel, Dec 11 2021

Formula

a(0) = 1, a(1) = 8, a(n) = 9*a(n-1) - 12*a(n-2).
G.f.: (1-x)/(1-9*x+12*x^2).
a(n) = (2^(-1-n)*((9-sqrt(33))^n*(-7+sqrt(33)) + (7+sqrt(33))*(9+sqrt(33))^n)) / sqrt(33). - Colin Barker, Apr 18 2017
a(n) = (2*sqrt(3))^(n-1)*( 2*sqrt(3)*ChebyshevU(n, 9/(4*sqrt(3))) - ChebyshevU(n-1, 9/(4*sqrt(3))) ). - G. C. Greubel, Dec 11 2021

Extensions

More terms from Colin Barker, Apr 18 2017

A285392 Start with a single cell at coordinates (0, 0), then iteratively subdivide the grid into 3 X 3 cells and remove the cells whose sum of modulo 2 coordinates is 0; a(n) is the number of cells after n iterations.

Original entry on oeis.org

1, 5, 36, 264, 1944, 14328, 105624, 778680, 5740632, 42321528, 312006168, 2300197176, 16957700568, 125016939000, 921660044184, 6794737129656, 50092713636696, 369297577174392, 2722565630929176, 20071519752269880, 147972890199278808, 1090897774766270712
Offset: 0

Views

Author

Peter Karpov, Apr 18 2017

Keywords

Comments

Cell configuration converges to a fractal carpet with dimension 1.818...

Crossrefs

Programs

  • Magma
    I:=[5, 36]; [1] cat [n le 2 select I[n] else 9*Self(n-1) - 12*Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 11 2021
    
  • Mathematica
    {1}~Join~LinearRecurrence[{9, -12}, {5, 36}, 16]
  • PARI
    Vec((1 - x)*(1 - 3*x) / (1 - 9*x + 12*x^2) + O(x^30)) \\ Colin Barker, Apr 18 2017
    
  • Sage
    [(1/4)*(bool(n==0) + (2*sqrt(3))^(n-1)*( 6*sqrt(3)*chebyshev_U(n, 9/(4*sqrt(3))) - 7*chebyshev_U(n-1, 9/(4*sqrt(3))) ) ) for n in (0..30)] # G. C. Greubel, Dec 11 2021

Formula

a(0) = 1, a(1) = 5, a(2) = 36, a(n) = 9*a(n-1) - 12*a(n-2).
G.f.: (1-4*x+3*x^2)/(1-9*x+12*x^2).
a(n) = (2^(-3-n)*((9-sqrt(33))^n*(-13+3*sqrt(33)) + (9+sqrt(33))^n*(13+3*sqrt(33)))) / sqrt(33) for n>0. - Colin Barker, Apr 18 2017
a(n) = (1/4)*([n=0] + (2*sqrt(3))^(n-1)*( 6*sqrt(3)*ChebyshevU(n, 9/(4*sqrt(3))) - 7*ChebyshevU(n-1, 9/(4*sqrt(3))) ) ). - G. C. Greubel, Dec 11 2021

Extensions

More terms from Colin Barker, Apr 18 2017

A285393 Start with a single cell at coordinates (0, 0, 0), then iteratively subdivide the grid into 3 X 3 X 3 cells and remove the cells whose sum of modulo 2 coordinates is 2 or 3; a(n) is the number of cells after n iterations.

Original entry on oeis.org

1, 20, 352, 6080, 104704, 1802240, 31019008, 533872640, 9188540416, 158144921600, 2721848492032, 46846013603840, 806271544459264, 13876822236200960, 238835410589974528, 4110620744461844480, 70748315180918112256, 1217656507884193710080, 20957211028999804813312
Offset: 0

Views

Author

Peter Karpov, Apr 19 2017

Keywords

Comments

Cell configuration converges to a fractal sponge with dimension 2.590...

Crossrefs

Programs

  • Magma
    [n le 2 select (20)^(n-1) else 20*Self(n-1) - 48*Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 11 2021
    
  • Mathematica
    LinearRecurrence[{20, -48}, {1, 20}, 19]
  • Sage
    [(4*sqrt(3))^n * chebyshev_U(n, 5/(2*sqrt(3))) for n in (0..30)] # G. C. Greubel, Dec 11 2021

Formula

a(0) = 1, a(1) = 20, a(n) = 20*a(n-1) - 48*a(n-2).
G.f.: 1/(1-20*x+48*x^2).
a(n) = ((13 - 5*sqrt(13))*(10 - 2*sqrt(13))^n + (2*(5 + sqrt(13)))^n*(13 + 5*sqrt(13)))/26.
a(n) = (4*sqrt(3))^n * ChebyshevU(n, 5/(2*sqrt(3))). - G. C. Greubel, Dec 11 2021

A285394 Start with a single cell at coordinates (0, 0, 0), then iteratively subdivide the grid into 3 X 3 X 3 cells and remove the cells whose sum of modulo 2 coordinates is 0 or 1; a(n) is the number of cells after n iterations.

Original entry on oeis.org

1, 7, 116, 1984, 34112, 587008, 10102784, 173879296, 2992652288, 51506839552, 886489481216, 15257461325824, 262597731418112, 4519596484722688, 77787238586384384, 1338804140460998656, 23042295357073522688, 396583308399342518272, 6825635990847321276416
Offset: 0

Views

Author

Peter Karpov, Apr 19 2017

Keywords

Comments

Cell configuration converges to a fractal with dimension 2.590...

Crossrefs

Programs

  • Magma
    I:=[7,116]; [n le 2 select I[n] else 20*Self(n-1) - 48*Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 10 2021
    
  • Mathematica
    {1}~Join~LinearRecurrence[{20, -48}, {7, 116}, 18]
    CoefficientList[Series[(1 - 13x + 24x^2)/(1 - 20x + 48x^2), {x, 0, 40}], x] (* Indranil Ghosh, Apr 19 2017 *)
  • Sage
    [(1/2)*bool(n==0) + (4*sqrt(3))^(n-1)*(2*sqrt(3)*chebyshev_U(n, 5/(2*sqrt(3))) - 3*chebyshev_U(n-1, 5/(2*sqrt(3)))) for n in (0..30)] # G. C. Greubel, Dec 10 2021

Formula

a(0) = 1, a(1) = 7, a(2) = 116, a(n) = 20*a(n-1) - 48*a(n-2).
G.f.: (1-13*x+24*x^2)/(1-20*x+48*x^2).
a(n) = (3*(10-2*sqrt(13))^n*(13+sqrt(13)) + (2*(5+sqrt(13)))^n*(91+23*sqrt(13)))/(52*(5+sqrt(13))) for n > 0.
a(n) = (1/2)*[n=0] + (4*sqrt(3))^(n-1)*(2*sqrt(3)*ChebyshevU(n, 5/(2*sqrt(3))) - 3*ChebyshevU(n-1, 5/(2*sqrt(3)))). - G. C. Greubel, Dec 10 2021

A285396 Start with a single cell at coordinates (0, 0, 0), then iteratively subdivide the grid into 3 X 3 X 3 cells and remove the cells whose sum of modulo 2 coordinates is 2; a(n) is the number of cells after n iterations.

Original entry on oeis.org

1, 21, 399, 7401, 136227, 2500437, 45845895, 840237393, 15396839067, 282119272221, 5169192919455, 94712719519353, 1735370171447763, 31796203000166949, 582583421696631159, 10674336158022192609, 195579614965832408523, 3583490696858688375405
Offset: 0

Views

Author

Peter Karpov, Apr 19 2017

Keywords

Comments

Cell configuration converges to a fractal with dimension 2.647...

Crossrefs

Programs

  • Magma
    I:=[1,21,399]; [n le 3 select I[n] else 28*Self(n-1) - 195*Self(n-2) + 324*Self(n-3) : n in [1..41]]; // G. C. Greubel, Dec 10 2021
    
  • Mathematica
    LinearRecurrence[{28, -195, 324}, {1, 21, 399}, 20]
  • Sage
    def A285396_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-7*x+6*x^2)/(1-28*x+195*x^2-324*x^3) ).list()
    A285396_list(40) # G. C. Greubel, Dec 10 2021

Formula

a(0) = 1, a(1) = 21, a(2) = 399, a(n) = 28*a(n-1) - 195*a(n-2) + 324*a(n-3).
G.f.: (1-7*x+6*x^2)/(1-28*x+195*x^2-324*x^3).

A285397 Start with a single cell at coordinates (0, 0, 0), then iteratively subdivide the grid into 3 X 3 X 3 cells and remove the cells whose sum of modulo 2 coordinates is 3; a(n) is the number of cells after n iterations.

Original entry on oeis.org

1, 26, 646, 15818, 385822, 9401330, 229023958, 5578844858, 135894050926, 3310204057250, 80632220390758, 1964094376340522, 47842741143064894, 1165385872796078546, 28387257791866411894, 691476036231391881242, 16843441238514542846350, 410283940250387099210114
Offset: 0

Views

Author

Peter Karpov, Apr 23 2017

Keywords

Comments

Cell configuration converges to a fractal with dimension 2.906...

Crossrefs

Programs

  • Magma
    I:=[1, 26, 646]; [n le 3 select I[n] else 32*Self(n-1) - 195*Self(n-2) + 216*Self(n-3) : n in [1..41]]; // G. C. Greubel, Dec 09 2021
  • Mathematica
    LinearRecurrence[{32, -195, 216}, {1, 26, 646}, 18]
  • PARI
    Vec((1 - 3*x)^2 / (1 - 32*x + 195*x^2 - 216*x^3) + O(x^20)) \\ Colin Barker, Apr 23 2017
    
  • Sage
    def A285397_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-6*x+9*x^2)/(1-32*x+195*x^2-216*x^3) ).list()
    A285397_list(40) # G. C. Greubel, Dec 09 2021
    

Formula

a(0) = 1, a(1) = 26, a(2) = 646, a(n) = 28*a(n-1) - 195*a(n-2) + 216*a(n-3).
G.f.: (1-6*x+9*x^2)/(1-32*x+195*x^2-216*x^3).

A285398 Start with a single cell at coordinates (0, 0, 0), then iteratively subdivide the grid into 3 X 3 X 3 cells and remove the cells whose sum of modulo 2 coordinates is 0; a(n) is the number of cells after n iterations.

Original entry on oeis.org

1, 19, 452, 10948, 266300, 6484372, 157936172, 3847025764, 93707895260, 2282596837492, 55601016789068, 1354367059315396, 32990588541122684, 803607076375862356, 19574804963320797548, 476816346057854861860, 11614615234500986326556, 282916657894827156657460
Offset: 0

Views

Author

Peter Karpov, Apr 23 2017

Keywords

Comments

Cell configuration converges to a fractal with dimension 2.906...

Crossrefs

Programs

  • Magma
    I:=[19, 452, 10948]; [1] cat [n le 3 select I[n] else 32*Self(n-1) - 195*Self(n-2) + 216*Self(n-3) : n in [1..41]]; // G. C. Greubel, Dec 09 2021
  • Mathematica
    {1}~Join~LinearRecurrence[{32, -195, 216}, {19, 452, 10948}, 17]
  • PARI
    Vec((1 - x)*(1 - 3*x)*(1 - 9*x) / (1 - 32*x + 195*x^2 - 216*x^3) + O(x^20)) \\ Colin Barker, Apr 23 2017
    
  • Sage
    def A285398_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-13*x+39*x^2-27*x^3)/(1-32*x+195*x^2-216*x^3) ).list()
    A285398_list(40) # G. C. Greubel, Dec 09 2021
    

Formula

a(0) = 1, a(1) = 19, a(2) = 452, a(3) = 10948, a(n) = 28*a(n-1) - 195*a(n-2) + 216*a(n-3).
G.f.: (1-13*x+39*x^2-27*x^3)/(1-32*x+195*x^2-216*x^3).

A285399 Start with a single cell at coordinates (0, 0, 0), then iteratively subdivide the grid into 3 X 3 X 3 cells and remove the cells whose sum of modulo 2 coordinates is 0 or 2; a(n) is the number of cells after n iterations.

Original entry on oeis.org

1, 13, 182, 2548, 35672, 499408, 6991712, 97883968, 1370375552, 19185257728, 268593608192, 3760310514688, 52644347205632, 737020860878848, 10318292052303872, 144456088732254208, 2022385242251558912, 28313393391521824768, 396387507481305546752
Offset: 0

Views

Author

Peter Karpov, Apr 23 2017

Keywords

Comments

Cell configuration converges to a fractal with dimension 2.402...

Crossrefs

Programs

  • Magma
    [1] cat [13*14^(n-1): n in [1..40]]; // G. C. Greubel, Dec 09 2021
  • Maple
    A285399:=n->13*14^(n-1): 1,seq(A285399(n), n=1..30); # Wesley Ivan Hurt, Apr 23 2017
  • Mathematica
    {1}~Join~LinearRecurrence[{14}, {13}, 18]
  • PARI
    Vec((1-x) / (1-14*x) + O(x^20)) \\ Colin Barker, Apr 23 2017
    
  • Sage
    [1]+[13*14^(n-1) for n in (1..40)] # G. C. Greubel, Dec 09 2021
    

Formula

a(0) = 1, a(1) = 13, a(n) = 14*a(n-1).
G.f.: (1-x)/(1-14*x).
a(n) = 13 * 14^(n-1) for n>0. - Colin Barker, Apr 23 2017
E.g.f.: (1 + 13*exp(14*x))/14. - G. C. Greubel, Dec 09 2021

A285400 Start with a single cell at coordinates (0, 0, 0), then iteratively subdivide the grid into 3 X 3 X 3 cells and remove the cells whose sum of modulo 2 coordinates is 0 or 3; a(n) is the number of cells after n iterations.

Original entry on oeis.org

1, 18, 378, 7938, 166698, 3500658, 73513818, 1543790178, 32419593738, 680811468498, 14297040838458, 300237857607618, 6304995009759978, 132404895204959538, 2780502799304150298, 58390558785387156258, 1226201734493130281418, 25750236424355735909778
Offset: 0

Views

Author

Peter Karpov, Apr 23 2017

Keywords

Comments

Cell configuration converges to a fractal with dimension 2.771...

Crossrefs

Programs

  • Magma
    [1] cat [18*21^(n-1): n in [1..40]]; // G. C. Greubel, Dec 09 2021
  • Mathematica
    {1}~Join~LinearRecurrence[{21}, {18}, 17]
  • PARI
    Vec((1-3*x) / (1-21*x) + O(x^20)) \\ Colin Barker, Apr 23 2017
    
  • Sage
    [1]+[18*21^(n-1) for n in (1..40)] # G. C. Greubel, Dec 09 2021
    

Formula

a(0) = 1, a(1) = 18, a(n) = 21*a(n-1).
G.f.: (1-3*x)/(1-21*x).
a(n) = 2 * 3^(n+1) * 7^(n-1) for n>0. - Colin Barker, Apr 23 2017
E.g.f.: (1 + 6*exp(21*x))/7. - G. C. Greubel, Dec 09 2021

A284395 Positions of 1 in A284394.

Original entry on oeis.org

2, 8, 17, 23, 32, 41, 47, 56, 62, 71, 80, 86, 95, 104, 110, 119, 125, 134, 143, 149, 158, 164, 173, 182, 188, 197, 206, 212, 221, 227, 236, 245, 251, 260, 269, 275, 284, 290, 299, 308, 314, 323, 329, 338, 347, 353, 362, 371, 377, 386, 392, 401, 410, 416, 425
Offset: 1

Views

Author

Clark Kimberling, May 02 2017

Keywords

Comments

The sequences p = A032766, q = A285395, r = A284396 of positions of 0,1,2, respectively, partition the positive integers. Let t,u,v be the slopes of p, q, r, respectively. Then t = 3/2, u = (9+3*sqrt(5))/2, v = (3+3*sqrt(5))/2, and 1/t + 1/u + 1/v = 1.

Examples

			As a word, A284394 = 01002001002002001..., in which the positions of 1 are 2,8,17,...
		

Crossrefs

Programs

  • Mathematica
    s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {0}}] &, {0}, 13]  (* A003849 *)
    w = StringJoin[Map[ToString, s]]; w1 = StringReplace[w, {"101" -> "2"}]
    st = ToCharacterCode[w1] - 48 (* A284394 *)
    Flatten[Position[st, 0]]  (* A032766 *)
    Flatten[Position[st, 1]]  (* A284395 *)
    Flatten[Position[st, 2]]  (* A284396 *)
Showing 1-10 of 11 results. Next