A285410 Sum of the entries in the (n+1)-th blocks of all set partitions of [2n+1].
1, 12, 185, 3757, 96454, 3018824, 111964040, 4813480830, 235727269842, 12967143328027, 792113203502422, 53224214308284463, 3902445739220008603, 310108348556403600064, 26551900616231571763742, 2437107937223749442138164, 238735439946016510599661488
Offset: 0
Keywords
Examples
a(1) = 12 because the sum of the entries in the second blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 0+3+2+5+2 = 12.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..345
- Wikipedia, Partition of a set
Programs
-
Maple
a:= proc(h) option remember; local b; b:= proc(n, m) option remember; `if`(n=0, [1, 0], add((p-> `if`(j=h+1, p+ [0, (2*h-n+2)*p[1]], p))(b(n-1, max(m, j))), j=1..m+1)) end: b(2*h+1, 0)[2] end: seq(a(n), n=0..20);
-
Mathematica
a[h_] := a[h] = Module[{b}, b[0, ] = {1, 0}; b[n, m_] := b[n, m] = Sum[ If[j == h + 1, # + {0, (2*h - n + 2)*#[[1]]}, #]&[b[n - 1, Max[m, j]]], {j, 1, m + 1}]; b[2*h + 1, 0][[2]]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 23 2018, translated from Maple *)
Formula
a(n) = A285362(2n+1,n+1).