A285442 Expansion of Product_{k>0} ((1-x^{5k-2}) * (1-x^{5k-3})/((1-x^{5k-1}) * (1-x^{5k-4})))^2 in powers of x.
1, 2, 1, -2, -2, 2, 5, 0, -8, -6, 7, 14, 1, -18, -15, 14, 30, 2, -40, -32, 32, 66, 6, -82, -65, 60, 125, 8, -157, -120, 117, 238, 19, -286, -222, 206, 419, 28, -507, -386, 366, 732, 55, -864, -659, 610, 1224, 86, -1442, -1090, 1016, 2024, 147, -2350, -1775, 1632
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- R. P. Agarwal, Lambert series and Ramanujan, Prod. Indian Acad. Sci. (Math. Sci.), v. 103, n. 3, 1993, pp. 269-293. see p. 282-283.
Crossrefs
Programs
-
Mathematica
nmax = 60; CoefficientList[Series[Product[((1-x^(5k-2)) * (1-x^(5k-3)) / ((1-x^(5k-1)) * (1-x^(5k-4))))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 13 2017 *)
Formula
a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A109091(k)*a(n-k) for n > 0.
Expansion of square of continued fraction 1 + x/(1 + x^2/(1 + x^3/(1 + x^4/(1 + ...)))). - Ilya Gutkovskiy, Apr 19 2017
From Seiichi Manyama, Jul 29 2024: (Start)
G.f.: ( Sum_{k in Z} x^k / (1 - x^(5*k+1)) ) / ( Sum_{k in Z} x^(3*k) / (1 - x^(5*k+1)) ).
G.f.: ( Sum_{k in Z} x^k / (1 - x^(5*k+2)) ) / ( Sum_{k in Z} x^(2*k) / (1 - x^(5*k+2)) ). (End)