cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A086550 Smallest k such that tau(k) - tau(k-1) = n, where tau(k) = number of divisors of k, or 0 if no such number exists.

Original entry on oeis.org

3, 2, 6, 50, 12, 36, 24, 400, 48, 1850, 60, 144, 120, 1600, 168, 576, 180, 1296, 240, 4356, 630, 2304, 360, 900, 960, 9216, 1008, 40000, 720, 20736, 840, 5184, 1800, 46656, 1260, 36864, 1680, 7056, 3024, 986050, 2880, 3600, 6480, 82944, 2520, 193600, 3360
Offset: 0

Views

Author

Amarnath Murthy, Aug 28 2003

Keywords

Comments

Conjecture: No term is zero.
a(2k+1) is either a square or one more than a square. - David Wasserman, Mar 24 2005

Examples

			a(3) = 50 as tau(50) - tau(49) = 6 - 3 = 3.
		

Crossrefs

Cf. A285457.

Programs

  • Mathematica
    With[{tau=Partition[DivisorSigma[0,Range[10^6]],2,1]},Flatten[ Table[ Position[ #[[2]]-#[[1]]&/@tau,n,1,1],{n,0,50}]]]+1 (* Harvey P. Dale, Aug 20 2017 *)
  • PARI
    /* finds first 100 terms */ nn=vector(100); nd1=1; for(k=2, 24285184, nd2=numdiv(k); d=nd2-nd1; if(d>0, if(d<=100, if(nn[d]==0, nn[d]=k))); nd1=nd2); for(n=1, 100, write("b086550.txt", n " " nn[n])) /* Donovan Johnson, Sep 25 2013 */

Extensions

Corrected and extended by David Wasserman, Mar 24 2005
Offset changed to 0, and a(0) added by Giovanni Resta, Apr 28 2017

A285787 Least number k such that the absolute value of the difference between the number of prime factors, with multiplicity, of k and k-1 is equal to n.

Original entry on oeis.org

3, 2, 8, 17, 32, 97, 128, 257, 769, 2048, 4097, 6144, 8192, 40961, 73728, 65537, 131072, 524289, 524288, 3145728, 6291456, 8388608, 18874368, 50331648, 113246209, 167772161, 268435457, 805306368, 1610612737, 2147483649, 2147483648, 17179869184, 21474836480
Offset: 0

Views

Author

Paolo P. Lava, Apr 26 2017

Keywords

Comments

a(n) <= A051900(n), with equality for n=3,5,7,8,13,15. - Robert Israel, Apr 26 2017

Examples

			a(9) = 2048 because 2047 = 23 * 89, 2048 = 2^11 and 11 - 2 = 9.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,k,v; v:=array(0..100);
    for k from 0 to 100 do v[k]:=0; od; a:=0;
    for k from 2 to q do b:=bigomega(k); if v[abs(b-a)]=0 then v[abs(b-a)]:=k; fi; a:=b; od; k:=0;
    while v[k]>0 do print(v[k]); k:=k+1; od; print(); end: P(10^6);
  • Mathematica
    s = PrimeOmega@ Range[10^6]; 1 + First /@ Values@ KeySort@ PositionIndex@ Flatten@ Map[Abs@ Differences@ # &, Partition[s, 2, 1]] (* Michael De Vlieger, Apr 26 2017, Version 10 *)

Formula

Least solutions of the equation abs(A001222(k) - A001222(k-1)) = n.

Extensions

a(24)-a(32) from Giovanni Resta, Apr 26 2017
Showing 1-2 of 2 results.