cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285510 Numbers k such that the average of the squarefree divisors of k is an integer.

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 20 2017

Keywords

Comments

Numbers n such that A034444(n)|A048250(n).
Numbers n such that 2^omega(n)|psi(rad(n)), where omega() is the number of distinct prime divisors (A001221), psi() is the Dedekind psi function (A001615) and rad() is the squarefree kernel (A007947).
From Robert Israel, Apr 24 2017: (Start)
All odd numbers are in the sequence.
A positive even number is in the sequence if and only if at least one of its prime factors is in A002145.
Thus this is the complement of 2*A072437 in the positive numbers.
(End)

Examples

			44 is in the sequence because 44 has 6 divisors {1, 2, 4, 11, 22, 44} among which 4 are squarefree {1, 2, 11, 22} and (1 + 2 + 11 + 22)/4 = 9 is an integer.
		

Crossrefs

Programs

  • Maple
    filter:= n -> n::odd or has(numtheory:-factorset(n) mod 4, 3):
    select(filter, [$1..1000]); # Robert Israel, Apr 24 2017
  • Mathematica
    Select[Range[100], IntegerQ[Total[Select[Divisors[#], SquareFreeQ]] / 2^PrimeNu[#]] &]
    Select[Range[110],IntegerQ[Mean[Select[Divisors[#],SquareFreeQ]]]&] (* Harvey P. Dale, Apr 11 2018 *)
    Select[Range[100], IntegerQ[Times @@ ((1 + FactorInteger[#][[;; , 1]])/2)] &] (* Amiram Eldar, Jul 01 2022 *)

Formula

a(n) ~ n (conjecture).
Conjecture is true, since A072437 has density 0. - Robert Israel, Apr 24 2017