A285548 Array read by antidiagonals: T(m,n) = number of step cyclic shifted sequences of length n using a maximum of m different symbols.
1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 6, 10, 10, 5, 1, 6, 21, 20, 15, 6, 1, 13, 24, 55, 35, 21, 7, 1, 10, 92, 76, 120, 56, 28, 8, 1, 24, 78, 430, 201, 231, 84, 36, 9, 1, 22, 327, 460, 1505, 462, 406, 120, 45, 10, 1, 45, 443, 2605, 2015, 4291, 952, 666, 165, 55, 11
Offset: 1
Examples
Table starts: 1 1 1 1 1 1 1 1 1 1 ... 2 3 4 6 6 13 10 24 22 45 ... 3 6 10 21 24 92 78 327 443 1632 ... 4 10 20 55 76 430 460 2605 5164 26962 ... 5 15 35 120 201 1505 2015 14070 37085 246753 ... 6 21 56 231 462 4291 6966 57561 188866 1519035 ... 7 28 84 406 952 10528 20140 192094 752087 7079800 ... ...
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- R. C. Titsworth, Equivalence classes of periodic sequences, Illinois J. Math., 8 (1964), 266-270.
Programs
-
Mathematica
IsLeastPoint[s_, f_] := Module[{t=f[s]}, While[t>s, t=f[t]]; Boole[s==t]]; c[n_, k_, t_] := Sum[IsLeastPoint[u, Mod[#*k+t, n]&], {u, 0, n-1}]; a[n_, x_] := Sum[If[GCD[k, n] == 1, x^c[n, k, t], 0], {t, 0, n-1}, {k, 1, n}] / (n*EulerPhi[n]); Table[a[n-m+1, m], {n, 1, 11}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 05 2017, translated from PARI *)
-
PARI
IsLeastPoint(s,f)={my(t=f(s)); while(t>s,t=f(t));s==t} C(n,k,t)=sum(u=0,n-1,IsLeastPoint(u,v->(v*k+t)%n)); a(n,x)=sum(t=0, n-1, sum(k=1, n, if (gcd(k, n)==1, x^C(n,k,t),0)))/(n * eulerphi(n)); for(m=1, 7, for(n=1, 10, print1( a(n,m), ", ") ); print(); );
Comments