A285577 Irregular triangle T(n,m) read by rows (n >= 1, 0 <= m <= Max(A001221([1..n]))), giving the number of integers in [1,n] with m distinct prime factors.
1, 1, 1, 1, 2, 1, 3, 1, 4, 1, 4, 1, 1, 5, 1, 1, 6, 1, 1, 7, 1, 1, 7, 2, 1, 8, 2, 1, 8, 3, 1, 9, 3, 1, 9, 4, 1, 9, 5, 1, 10, 5, 1, 11, 5, 1, 11, 6, 1, 12, 6, 1, 12, 7, 1, 12, 8, 1, 12, 9, 1, 13, 9, 1, 13, 10, 1, 14, 10, 1, 14, 11, 1, 15, 11, 1, 15, 12, 1, 16, 12
Offset: 1
Examples
First few rows are: 1; 1, 1; 1, 2; 1, 3; 1, 4; 1, 4, 1; 1, 5, 1; 1, 6, 1; 1, 7, 1; 1, 7, 2; 1, 8, 2; ...
Links
- Michel Marcus and David A. Corneth, Table of n, a(n) for n = 1..20001 (first 5062 rows flattened, first 806 terms from Michel Marcus)
Programs
-
Maple
omega := proc(n) nops(numtheory[factorset](n)) end proc: # # A001221 A:=Array(0..20,0); ans:=[]; mx:=0; for n from 1 to 20 do k:=omega(n); if k>mx then mx:=k; fi; A[k]:=A[k]+1; ans:=[op(ans),[seq(A[i],i=0..mx)]]; od: ans; # N. J. A. Sloane, Aug 19 2021
-
Mathematica
With[{nn = 29}, Function[s, Array[Function[t, Count[t, #] & /@ Range[0, Max@ t]]@ Take[s, #] &, nn]]@ PrimeNu@ Range@ nn] // Flatten (* Michael De Vlieger, Apr 23 2017 *)
-
PARI
tabf(nn) = {for (n=1, nn, vo = vector(n, k, omega(k)); for (k=0, vecmax(vo), print1(#select(x->x==k, vo), ", ");); print(););}
-
PARI
upto(n) = {my(res = [1], v=[1], i=2); while(#res
#v, v=concat(v,[1]), v[o]++); res=concat(res,v); i++); res} \\ David A. Corneth, Apr 22 2017
Formula
See A346617 for the asymptotic distribution of the rows. - N. J. A. Sloane, Aug 19 2021
Comments