A285620 Number of circulant graphs on n vertices up to Cayley isomorphism.
1, 2, 2, 4, 3, 8, 4, 12, 8, 20, 8, 48, 14, 48, 44, 88, 36, 192, 60, 336, 200, 416, 188, 1344, 424, 1400, 944, 3104, 1182, 8768, 2192, 8784, 6768, 16460, 11144, 46848, 14602, 58288, 44424, 138432, 52488, 355200, 99880, 432576, 351712, 762608, 364724, 2151936, 798960
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- V. A. Liskovets and R. Poeschel, On the enumeration of circulant graphs of prime-power and squarefree orders.
Programs
-
Mathematica
IsLeastPoint[s_, f_] := Module[{t = f[s]}, While[t > s, t=f[t]]; Boole[s == t]]; c[n_, k_] := Sum[IsLeastPoint[u, Abs[Mod[#*k + Quotient[n, 2], n] - Quotient[n, 2]]&], {u, 1, n/2}]; a[n_] := If[n < 3, n, Sum[If[GCD[k, n] == 1, 2^c[n, k], 0]*2/EulerPhi[n], {k, 1, n/2}]]; Array[a, 50] (* Jean-François Alcover, Jun 12 2017, translated from PARI *)
-
PARI
IsLeastPoint(s,f)={my(t=f(s)); while(t>s,t=f(t));s==t} C(n,k)=sum(u=1,n/2,IsLeastPoint(u,v->abs((v*k+n\2)%n-n\2))); a(n)=if(n<3, n, sum(k=1, n/2, if (gcd(k, n)==1, 2^C(n,k),0))*2/eulerphi(n));
Comments