cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A056391 Number of step shifted (decimated) sequence structures using a maximum of two different symbols.

Original entry on oeis.org

1, 2, 3, 6, 6, 20, 14, 48, 52, 140, 108, 624, 352, 1400, 2172, 4464, 4116, 22112, 14602, 68016, 88376, 209936, 190746, 1075200, 839128, 2797000, 3730584, 11276704, 9587580, 67195520, 35792568
Offset: 1

Views

Author

Keywords

Comments

See A056371 for an explanation of step shifts. Permuting the symbols will not change the structure.
Also, number of circulant digraphs on n vertices up to Cayley isomorphism. Two circulant graphs are Cayley isomorphic if there is a d, which is necessarily prime to n, that transforms through multiplication modulo n the step values of one graph into those of the other. For squarefree n this is the only way that two circulant graphs can be isomorphic (see A049297). - Andrew Howroyd, Apr 20 2017

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia.

Crossrefs

Programs

  • Mathematica
    a[m_, n_] := (1/EulerPhi[n])*Sum[If[GCD[k, n] == 1, m^DivisorSum[n, EulerPhi[#]/MultiplicativeOrder[k, #]&], 0], {k, 1, n}]; a[n_] := a[2, n]/2; Array[a, 40] (* Jean-François Alcover, Jun 12 2017 *)
  • PARI
    a(n)=sum(k=1, n, if(gcd(k, n)==1, 2^(sumdiv(n, d, eulerphi(d)/znorder(Mod(k, d)))-1), 0))/eulerphi(n); \\ Andrew Howroyd, Apr 20 2017
    
  • PARI
    \\ alternative using Polya enumeration functions (see attachment)
    a(n) = NonequivalentStructs(StepShiftPerms(n),2); \\ Andrew Howroyd, Oct 01 2017

Formula

Use de Bruijn's generalization of Polya's enumeration theorem as discussed in reference.
a(n) = A056371(n) / 2. - Andrew Howroyd, Apr 20 2017
a(n) = A288620(n, 2) + 1. - Andrew Howroyd, Jun 13 2017

A049287 Number of nonisomorphic circulant graphs, i.e., undirected Cayley graphs for the cyclic group of order n.

Original entry on oeis.org

1, 2, 2, 4, 3, 8, 4, 12, 8, 20, 8, 48, 14, 48, 44, 84, 36, 192, 60, 336, 200, 416, 188, 1312, 423, 1400, 928, 3104, 1182, 8768, 2192, 8364, 6768, 16460, 11144, 46784, 14602, 58288, 44424, 136128, 52488, 355200, 99880, 432576, 351424, 762608, 364724, 2122944, 798952, 3356408
Offset: 1

Views

Author

Keywords

Comments

Further values for (twice) squarefree and (twice) prime-squared orders can be found in the Liskovets reference.
Terms may be computed by filtering potentially isomorphic graphs of A285620 through nauty. - Andrew Howroyd, Apr 29 2017

Crossrefs

Programs

  • Mathematica
    CountDistinct /@ Table[CanonicalGraph[CirculantGraph[n, #]] & /@ Subsets[Range[Floor[n/2]]], {n, 25}] (* Eric W. Weisstein, May 13 2017 *)

Formula

There is an easy formula for prime orders. Formulae are also known for squarefree and prime-squared orders.
From Andrew Howroyd, Apr 24 2017: (Start)
a(n) <= A285620(n).
a(n) = A285620(n) for n squarefree or twice square free.
a(A000040(n)^2) = A038781(n).
a(n) = Sum_{d|n} A075545(d).
(End)

Extensions

a(48)-a(50) from Andrew Howroyd, Apr 29 2017

A367554 a(n) is the number of 2n-regular circulant graphs of order 53.

Original entry on oeis.org

1, 1, 13, 100, 578, 2530, 8866, 25300, 60115, 120175, 204347, 297160, 371516, 400024, 371516, 297160, 204347, 120175, 60115, 25300, 8866, 2530, 578, 100, 13, 1, 1
Offset: 0

Views

Author

Andrey Zabolotskiy, Nov 22 2023

Keywords

Crossrefs

Programs

  • Python
    from math import gcd, comb
    from sympy import totient, divisors
    def A367554(n): return sum(totient(d)*comb(26//d,n//d) for d in divisors(gcd(n,26),generator=True))//26 # Chai Wah Wu, Nov 23 2023
  • SageMath
    def a(k, p):
        return (2/(p-1)) * sum(euler_phi(d) * binomial((p-1)/(2*d), k/(2*d)) for d in divisors(gcd(k, p-1)/2)) # see Mishna; beware the missing prefactor (2/(p-1))
    print([a(2*n, 53) for n in range(27)]) # Andrey Zabolotskiy, Nov 22 2023
    

Formula

Sum_n a(n) = 2581428 = A049287(53) = A285620(53) = A000031((53-1)/2). - Andrey Zabolotskiy, Nov 22 2023

A344517 Minimum diameter of 4-regular circulant graphs of order n.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7
Offset: 4

Views

Author

Andres Cicuttin, May 21 2021

Keywords

References

  • F. Boesch and Jhing-Fa Wang, Reliable circulant networks with minimum transmission delay, IEEE Transactions on Circuits and Systems, vol. 32, no. 12, pp. 1286-1291, December 1985, doi: 10.1109/TCS.1985.1085667.
  • Bevan, David et al. Large circulant graphs of fixed diameter and arbitrary degree. Ars Math. Contemp. 13 (2017): 275-291.

Crossrefs

Programs

  • Mathematica
    mindiameter[n_]:=Module[{nmax,tab,stab},
    nmax=Floor[n/2];
    tab=Flatten[#,1]&@Table[Table[{n,i,j,GraphDiameter[CirculantGraph[n,{i,j}]]},{i,1,j-1}],{j,2,nmax}];
    stab=Sort[tab,#1[[4]]<#2[[4]]&];
    stab[[1]][[4]]//Return]
    Table[mindiameter[n],{n,4,120}]
    Table[Ceiling[(Sqrt[2n-1]-1)/2],{n,4,88}] (* Stefano Spezia, May 23 2021 *)

Formula

a(n) = ceiling((sqrt(2n-1)-1)/2).
Showing 1-4 of 4 results.