A285634 a(1) = 4, a(n) = Product_{d|a(n-1)} d.
4, 8, 64, 2097152, 3450873173395281893717377931138512726225554486085193277581262111899648
Offset: 1
Examples
a(1) = 4; a(2) = 8 because 4 has 3 divisors {1, 2, 4} and 1*2*4 = 8; a(3) = 64 because 64 has 7 divisors {1, 2, 4, 8, 16, 32, 64} and 1*2*4*8*16*32*64 = 2097152, etc. ... a(6) = 2^26796; a(7) = 2^359026206; a(8) = 2^64449908476890321; a(9) = 2^2076895351339769460477611370186681, etc.
Links
- Eric Weisstein's World of Mathematics, Divisor Product
Programs
-
Mathematica
RecurrenceTable[{a[1] == 4, a[n] == Sqrt[a[n - 1]]^DivisorSigma[0, a[n - 1]]}, a, {n, 5}] NestList[Times@@Divisors[#]&,4,4] (* Harvey P. Dale, Apr 18 2019 *)
Comments