cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285637 G.f.: 1/( (1 - x/(1 - x^2/(1 - x^3/(1 - x^4/(1 - ...))))) * (1 + x/(1 + x^2/(1 + x^3/(1 + x^4/(1 + ...))))) ), a continued fraction.

Original entry on oeis.org

1, 0, 1, 2, 1, 4, 6, 10, 19, 30, 55, 92, 161, 282, 483, 846, 1462, 2538, 4409, 7642, 13276, 23032, 39977, 69394, 120426, 209036, 362800, 629698, 1092952, 1896968, 3292522, 5714678, 9918752, 17215620, 29880461, 51862438, 90015657, 156236814, 271174435, 470667300, 816919764, 1417897172, 2460991365
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 23 2017

Keywords

Examples

			G.f.: A(x) = 1 + x^2 + 2*x^3 + x^4 + 4*x^5 + 6*x^6 + 10*x^7 + 19*x^8 + 30*x^9 + 55*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 42; CoefficientList[Series[(1/(1 + ContinuedFractionK[-x^k, 1, {k, 1, nmax}])) (1/(1 + ContinuedFractionK[x^k, 1, {k, 1, nmax}])), {x, 0, nmax}], x]
    nmax = 42; CoefficientList[Series[Product[(1 - x^(5 k - 1)) (1 - x^(5 k - 4))/((1 - x^(5 k - 2)) (1 - x^(5 k - 3))), {k, 1, nmax}] Sum[(-1)^k x^(k (k + 1))/Product[(1 - x^m), {m, 1, k}], {k, 0, nmax}] / Sum[(-1)^k x^(k^2)/Product[(1 - x^m), {m, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: A(x) = R(x)*P(x)/Q(x), where R(x) = Product_{k>=1} (1 - x^(5*k-1))*(1 - x^(5*k-4)) / ((1 - x^(5*k-2))*(1 - x^(5*k-3))), P(x) = Sum_{k>=0} (-1)^k*x^(k*(k+1)) / Product_{m=1..k} (1 - x^m) and Q(x) = Sum_{k>=0} (-1)^k*x^(k^2) / Product_{m=1..k} (1 - x^m).
a(n) ~ c * d^n, where d = 1/A347901 = 1.7356628245303474256582607497196685302546528472903927546099... and c = 0.215558365582078354136603033062960103377669... - Vaclav Kotesovec, Aug 26 2017