A285637 G.f.: 1/( (1 - x/(1 - x^2/(1 - x^3/(1 - x^4/(1 - ...))))) * (1 + x/(1 + x^2/(1 + x^3/(1 + x^4/(1 + ...))))) ), a continued fraction.
1, 0, 1, 2, 1, 4, 6, 10, 19, 30, 55, 92, 161, 282, 483, 846, 1462, 2538, 4409, 7642, 13276, 23032, 39977, 69394, 120426, 209036, 362800, 629698, 1092952, 1896968, 3292522, 5714678, 9918752, 17215620, 29880461, 51862438, 90015657, 156236814, 271174435, 470667300, 816919764, 1417897172, 2460991365
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x^2 + 2*x^3 + x^4 + 4*x^5 + 6*x^6 + 10*x^7 + 19*x^8 + 30*x^9 + 55*x^10 + ...
Links
- Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
Programs
-
Mathematica
nmax = 42; CoefficientList[Series[(1/(1 + ContinuedFractionK[-x^k, 1, {k, 1, nmax}])) (1/(1 + ContinuedFractionK[x^k, 1, {k, 1, nmax}])), {x, 0, nmax}], x] nmax = 42; CoefficientList[Series[Product[(1 - x^(5 k - 1)) (1 - x^(5 k - 4))/((1 - x^(5 k - 2)) (1 - x^(5 k - 3))), {k, 1, nmax}] Sum[(-1)^k x^(k (k + 1))/Product[(1 - x^m), {m, 1, k}], {k, 0, nmax}] / Sum[(-1)^k x^(k^2)/Product[(1 - x^m), {m, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
Formula
G.f.: A(x) = R(x)*P(x)/Q(x), where R(x) = Product_{k>=1} (1 - x^(5*k-1))*(1 - x^(5*k-4)) / ((1 - x^(5*k-2))*(1 - x^(5*k-3))), P(x) = Sum_{k>=0} (-1)^k*x^(k*(k+1)) / Product_{m=1..k} (1 - x^m) and Q(x) = Sum_{k>=0} (-1)^k*x^(k^2) / Product_{m=1..k} (1 - x^m).
a(n) ~ c * d^n, where d = 1/A347901 = 1.7356628245303474256582607497196685302546528472903927546099... and c = 0.215558365582078354136603033062960103377669... - Vaclav Kotesovec, Aug 26 2017