A285689 a(1) = 2; a(n + 1) = smallest prime > a(n) such that a(n + 1) - a(n) is the product of four primes.
2, 83, 107, 131, 167, 191, 227, 251, 307, 331, 347, 383, 419, 443, 467, 491, 547, 563, 587, 641, 677, 701, 757, 773, 797, 821, 857, 881, 937, 953, 977, 1013, 1049, 1103, 1163, 1187, 1223, 1259, 1283, 1307, 1361, 1451, 1487, 1511, 1567, 1583, 1607, 1663, 1699, 1723, 1747, 1783, 1823
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A[1]:= 2: p:= 2: n:= 1: while n < 60 do p:= nextprime(p); if numtheory:-bigomega(p-A[n]) = 4 then n:= n+1; A[n]:= p; fi od: seq(A[i],i=1..60); # Robert Israel, Nov 28 2019
-
Mathematica
NestList[Module[{p = NextPrime@ #}, While[PrimeOmega[p - #] != 4, p = NextPrime@ p]; p] &, 2, 52] (* Michael De Vlieger, Apr 25 2017 *)
Comments