A285690 a(1) = 2; a(n + 1) = smallest prime > a(n) such that a(n + 1) - a(n) is the product of five primes.
2, 569, 601, 673, 853, 1021, 1069, 1117, 1229, 1277, 1439, 1471, 1543, 1663, 1783, 1831, 1879, 1951, 1999, 2111, 2143, 2251, 2371, 2539, 2647, 2719, 2767, 2879, 2927, 2999, 3079, 3187, 3259, 3307, 3469, 3517, 3637, 3709, 3821, 3853, 4021, 4093, 4201
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A[1]:= 2: for n from 2 to 100 do p:= A[n-1]; do p:= nextprime(p); if numtheory:-bigomega(p-A[n-1])=5 then A[n]:= p; break fi od od: seq(A[i],i=1..100); # Robert Israel, Nov 04 2019
-
Mathematica
NestList[Module[{p = NextPrime@ #}, While[PrimeOmega[p - #] != 5, p = NextPrime@ p]; p] &, 2, 40] (* Michael De Vlieger, Apr 25 2017 *)
Comments