A285724 Square array read by descending antidiagonals: If n > k, A(n,k) = T(lcm(n,k), gcd(n,k)), otherwise A(n,k) = T(gcd(n,k), lcm(n,k)), where T(n,k) is sequence A000027 considered as a two-dimensional table.
1, 2, 3, 4, 5, 6, 7, 16, 21, 10, 11, 12, 13, 14, 15, 16, 46, 67, 78, 55, 21, 22, 23, 106, 25, 120, 27, 28, 29, 92, 31, 191, 210, 34, 105, 36, 37, 38, 211, 80, 41, 90, 231, 44, 45, 46, 154, 277, 379, 436, 465, 406, 300, 171, 55, 56, 57, 58, 59, 596, 61, 630, 63, 64, 65, 66, 67, 232, 436, 631, 781, 862, 903, 820, 666, 465, 253, 78, 79, 80, 529, 212, 991, 302, 85, 324, 1035, 230, 561, 90, 91
Offset: 1
Examples
The top left 12 X 12 corner of the array: 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67 3, 5, 16, 12, 46, 23, 92, 38, 154, 57, 232, 80 6, 21, 13, 67, 106, 31, 211, 277, 58, 436, 529, 94 10, 14, 78, 25, 191, 80, 379, 59, 631, 212, 947, 109 15, 55, 120, 210, 41, 436, 596, 781, 991, 96, 1486, 1771 21, 27, 34, 90, 465, 61, 862, 302, 193, 467, 2146, 142 28, 105, 231, 406, 630, 903, 85, 1541, 1954, 2416, 2927, 3487 36, 44, 300, 63, 820, 324, 1596, 113, 2557, 822, 3829, 355 45, 171, 64, 666, 1035, 208, 2016, 2628, 145, 4006, 4852, 706 55, 65, 465, 230, 101, 495, 2485, 860, 4095, 181, 5996, 1832 66, 253, 561, 990, 1540, 2211, 3003, 3916, 4950, 6105, 221, 8647 78, 90, 103, 117, 1830, 148, 3570, 375, 739, 1890, 8778, 265
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10585; the first 145 antidiagonals of array
- MathWorld, Pairing Function
Comments