A285815 Numbers k such that, for any divisor d of k, the digital sum of d divides k.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 54, 60, 63, 72, 81, 90, 108, 120, 162, 180, 216, 243, 270, 324, 360, 486, 540, 648, 810, 972, 1080, 1458, 1620, 1944, 2430, 2916, 3240, 4374, 4860, 5832, 7290, 8748, 9720, 13122, 14580, 17496
Offset: 1
Examples
The divisors of 243 are: 1, 3, 9, 27, 81, 243; their digital sums are: 1, 3, 9, 9, 9, 9, all divisors of 243; hence 243 is in the sequence. 14 divides 42, but its digital sum, 5, does not divide 42; hence 42 is not in the sequence.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..99
- David A. Corneth, Conjectured full sequence with 108 terms. All 9973-smooth terms <= 10^30.
Programs
-
PARI
is(n) = fordiv(n, d, if (n % sumdigits(d), return (0))); return (1)
-
Python
from sympy import divisors from sympy.ntheory.factor_ import digits def ok(n): return all(n%sum(digits(d)[1:])==0 for d in divisors(n)) print([n for n in range(1, 20001) if ok(n)]) # Indranil Ghosh, Apr 28 2017
Comments