A285859 Number of permutations of [n] with eight ordered cycles such that equal-sized cycles are ordered with increasing least elements.
1, 288, 19560, 921360, 37423914, 1124673264, 34065856396, 1010435626200, 27564092244689, 746494701977024, 20568917530438368, 575594436161070144, 15985318079107792576, 452561731064312392320, 12942265817549110947520, 383915932720263224659840
Offset: 8
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 8..450
- Wikipedia, Permutation
Programs
-
Maple
b:= proc(n, i, p) option remember; series(`if`(n=0 or i=1, (p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat [multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)), x, 9) end: a:= n-> coeff(b(n$2, 0), x, 8): seq(a(n), n=8..25);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, p_] := b[n, i, p] = Series[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]], {x, 0, 9}]; a[n_] := Coefficient[b[n, n, 0], x, 8]; Table[a[n], {n, 8, 25}] (* Jean-François Alcover, May 30 2018, from Maple *)