cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285871 Decimal expansion of 1/sqrt(2 - sqrt(2)) (reciprocal of A101464).

Original entry on oeis.org

1, 3, 0, 6, 5, 6, 2, 9, 6, 4, 8, 7, 6, 3, 7, 6, 5, 2, 7, 8, 5, 6, 6, 4, 3, 1, 7, 3, 4, 2, 7, 1, 8, 7, 1, 5, 3, 5, 8, 3, 7, 6, 1, 1, 8, 8, 3, 4, 9, 2, 6, 9, 5, 2, 7, 5, 4, 8, 8, 9, 8, 3, 6, 6, 9, 0, 8, 0, 8, 1, 0, 4, 1, 4, 6, 1, 1, 9, 2, 0, 5, 0, 9, 5, 1, 8, 5, 3, 7, 2, 0, 1, 9, 2, 6, 2, 8, 1, 4
Offset: 1

Views

Author

Wolfdieter Lang, May 11 2017

Keywords

Comments

This number is the length ratio of the radius of a circle and the side of the inscribed octagon.
In the Corbalán reference, pp. 61-62, this number is called Cordoba number or Cordoba proportion, attributed to the architect Rafael de la Hoz (1924-2000), who used the rectangle with this proportion to explain the structure of the Mihrab of Cordoba.

Examples

			1.30656296487637652785664317342718715358376118834926952754889836690808104146...
		

References

  • Fernando Corbalán, Der goldene Schnitt, Librero, 2017. Original: La proportión áurea, RBA Contenidos Editoriales y Audiovisuales S. A. U., 2010. English: The golden Ratio, 2012, RBA Coleccionables.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 1/Sqrt(2 - Sqrt(2)); // G. C. Greubel, Oct 10 2018
  • Maple
    evalf((sqrt(2-sqrt(2)))^(-1),100); # Muniru A Asiru, Oct 11 2018
  • Mathematica
    RealDigits[1/Sqrt[2 - Sqrt[2]], 10, 100][[1]] (* Indranil Ghosh, May 11 2017 *)
  • PARI
    default(realprecision, 100); 1/sqrt(2 - sqrt(2)) \\ G. C. Greubel, Oct 10 2018
    
  • Python
    from sympy import N, sqrt
    print(N(1/sqrt(2 - sqrt(2)), 100)) # Indranil Ghosh, May 11 2017
    

Formula

Equals 1/(2*sin(Pi/8)) = 1/A101464.
Equals Product_{k>=0} (1 + (-1)^k/(4*k+2)). - Amiram Eldar, Aug 07 2020
The minimal polynomial is 2*x^4 - 4*x^2 + 1. - Joerg Arndt, May 10 2021
Equals Sum_{n>=0} binomial(2*n - 1/2, -1/2)/2^n. - Antonio Graciá Llorente, Nov 13 2024

Extensions

Offset and example corrected by Amiram Eldar, Aug 07 2020