A285871 Decimal expansion of 1/sqrt(2 - sqrt(2)) (reciprocal of A101464).
1, 3, 0, 6, 5, 6, 2, 9, 6, 4, 8, 7, 6, 3, 7, 6, 5, 2, 7, 8, 5, 6, 6, 4, 3, 1, 7, 3, 4, 2, 7, 1, 8, 7, 1, 5, 3, 5, 8, 3, 7, 6, 1, 1, 8, 8, 3, 4, 9, 2, 6, 9, 5, 2, 7, 5, 4, 8, 8, 9, 8, 3, 6, 6, 9, 0, 8, 0, 8, 1, 0, 4, 1, 4, 6, 1, 1, 9, 2, 0, 5, 0, 9, 5, 1, 8, 5, 3, 7, 2, 0, 1, 9, 2, 6, 2, 8, 1, 4
Offset: 1
Examples
1.30656296487637652785664317342718715358376118834926952754889836690808104146...
References
- Fernando Corbalán, Der goldene Schnitt, Librero, 2017. Original: La proportión áurea, RBA Contenidos Editoriales y Audiovisuales S. A. U., 2010. English: The golden Ratio, 2012, RBA Coleccionables.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10001 [offset adapted to 1 by _Georg Fischer_, Sep 03 2020]
- Eric Weisstein's World of Mathematics, Octagon.
- Wikipedia, Octagon.
- Index entries for algebraic numbers, degree 4.
Programs
-
Magma
SetDefaultRealField(RealField(100)); 1/Sqrt(2 - Sqrt(2)); // G. C. Greubel, Oct 10 2018
-
Maple
evalf((sqrt(2-sqrt(2)))^(-1),100); # Muniru A Asiru, Oct 11 2018
-
Mathematica
RealDigits[1/Sqrt[2 - Sqrt[2]], 10, 100][[1]] (* Indranil Ghosh, May 11 2017 *)
-
PARI
default(realprecision, 100); 1/sqrt(2 - sqrt(2)) \\ G. C. Greubel, Oct 10 2018
-
Python
from sympy import N, sqrt print(N(1/sqrt(2 - sqrt(2)), 100)) # Indranil Ghosh, May 11 2017
Formula
Equals 1/(2*sin(Pi/8)) = 1/A101464.
Equals Product_{k>=0} (1 + (-1)^k/(4*k+2)). - Amiram Eldar, Aug 07 2020
The minimal polynomial is 2*x^4 - 4*x^2 + 1. - Joerg Arndt, May 10 2021
Equals Sum_{n>=0} binomial(2*n - 1/2, -1/2)/2^n. - Antonio Graciá Llorente, Nov 13 2024
Extensions
Offset and example corrected by Amiram Eldar, Aug 07 2020
Comments