A285900 Sum of all parts of all partitions of all positive integers <= n into consecutive parts.
1, 3, 9, 13, 23, 35, 49, 57, 84, 104, 126, 150, 176, 204, 264, 280, 314, 368, 406, 446, 530, 574, 620, 668, 743, 795, 903, 959, 1017, 1137, 1199, 1231, 1363, 1431, 1571, 1679, 1753, 1829, 1985, 2065, 2147, 2315, 2401, 2489, 2759, 2851, 2945, 3041, 3188, 3338, 3542, 3646, 3752, 3968, 4188, 4300, 4528, 4644, 4762, 5002
Offset: 1
Keywords
Examples
For n = 15, there are four partitions of 15 into consecutive parts: [15], [8, 7], [6, 5, 4] and [5, 4, 3, 2, 1]. The sum of all parts of these four partitions is 60, and a(14) = 204, so a(15) = 204 + 60 = 264.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
a285900[n_] := Accumulate[Map[# DivisorSum[#, 1 &, OddQ] &, Range[n]]] a285900[60] (* data *) (* Hartmut F. W. Hoft, Jun 06 2017 *)
-
PARI
a(n)=sum(i=1, n, i * sumdiv(i, d, d%2)); \\ Andrew Howroyd, Nov 06 2018
-
PARI
a(n)=sum(k=1, (n+1)\2, (2*k - 1)/2 * (n\(2*k - 1)) * (1 + n\(2*k - 1))); \\ Andrew Howroyd, Nov 06 2018
Formula
a(n) = Sum_{k=1..floor((n+1)/2)} (2*k-1)/2 * floor(n/(2*k-1)) * floor(1 + n/(2*k-1)). - Daniel Suteu, Nov 06 2018
Comments