A285917 Number of ordered set partitions of [n] into two blocks such that equal-sized blocks are ordered with increasing least elements.
1, 6, 11, 30, 52, 126, 219, 510, 896, 2046, 3632, 8190, 14666, 32766, 59099, 131070, 237832, 524286, 956196, 2097150, 3841586, 8388606, 15425136, 33554430, 61908562, 134217726, 248377154, 536870910, 996183062, 2147483646, 3994427099, 8589934590, 16013066072
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..1000
- Wikipedia, Partition of a set
Programs
-
Maple
a:= n-> 2*add(binomial(n, k), k=1..n/2)- `if`(n::even, 3/2*binomial(n, n/2), 0): seq(a(n), n=2..40); # second Maple program: a:= proc(n) option remember; `if`(n<5, [0, 1, 6, 11][n], (9*(n-1)*(n-4)*a(n-1)+2*(3*n^2-16*n+6)*a(n-2) -36*(n-2)*(n-4)*a(n-3)+8*(n-3)*(3*n-10)*a(n-4)) /((3*n-13)*n)) end: seq(a(n), n=2..40);
-
Mathematica
a[n_] := 2*Sum[Binomial[n, k], {k, 1, n/2}] - If[EvenQ[n], 3/2*Binomial[n, n/2], 0]; Table[a[n], {n, 2, 40}] (* Jean-François Alcover, May 26 2018, from Maple *)
-
PARI
a(n) = 2*sum(k=1, n\2, binomial(n, k)) - if (!(n%2), 3*binomial(n, n/2)/2); \\ Michel Marcus, May 26 2018
Comments