A285928 Expansion of (Product_{k>0} (1 - x^(5*k)) / (1 - x^k))^5 in powers of x.
1, 5, 20, 65, 190, 501, 1240, 2890, 6440, 13775, 28502, 57205, 111880, 213670, 399620, 733128, 1321850, 2345340, 4100700, 7072520, 12045005, 20272465, 33746060, 55595635, 90706390, 146638756, 235016940, 373580735, 589238640, 922537655, 1434232510, 2214817165
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
nmax = 40; CoefficientList[Series[Product[((1 - x^(5*k)) / (1 - x^k))^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 30 2017 *)
Formula
a(0) = 1, a(n) = (5/n)*Sum_{k=1..n} A116073(k)*a(n-k) for n > 0.
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(3/4) * 3^(1/4) * 5^(5/2) * n^(3/4)). - Vaclav Kotesovec, Apr 30 2017
Comments