cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A285928 Expansion of (Product_{k>0} (1 - x^(5*k)) / (1 - x^k))^5 in powers of x.

Original entry on oeis.org

1, 5, 20, 65, 190, 501, 1240, 2890, 6440, 13775, 28502, 57205, 111880, 213670, 399620, 733128, 1321850, 2345340, 4100700, 7072520, 12045005, 20272465, 33746060, 55595635, 90706390, 146638756, 235016940, 373580735, 589238640, 922537655, 1434232510, 2214817165
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2017

Keywords

Comments

In general, if m > 1 and g.f. = Product_{k>=1} ((1 - x^(m*k)) / (1 - x^k))^m, then a(n, m) ~ exp(Pi*sqrt(2*(m-1)*n/3)) * (m-1)^(1/4) / (2^(5/4) * 3^(1/4) * m^(m/2) * n^(3/4)). - Vaclav Kotesovec, Apr 30 2017

Crossrefs

(Product_{k>0} (1 - x^(m*k)) / (1 - x^k))^m: A022567 (m=2), A285927 (m=3), A093160 (m=4), this sequence (m=5).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1 - x^(5*k)) / (1 - x^k))^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 30 2017 *)

Formula

a(0) = 1, a(n) = (5/n)*Sum_{k=1..n} A116073(k)*a(n-k) for n > 0.
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(3/4) * 3^(1/4) * 5^(5/2) * n^(3/4)). - Vaclav Kotesovec, Apr 30 2017
Showing 1-1 of 1 results.