cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285933 a(n) = smallest k such that (6*k-3)*2^n-1 and (6*k-3)*2^n+1 are twin primes.

Original entry on oeis.org

1, 1, 2, 3, 14, 1, 2, 10, 8, 3, 17, 28, 62, 8, 58, 20, 64, 1, 12, 75, 14, 6, 197, 41, 128, 63, 14, 65, 8, 58, 114, 98, 63, 45, 124, 36, 72, 516, 28, 45, 43, 183, 2, 25, 142, 68, 249, 30, 324, 155, 188, 200, 334, 56, 87, 178, 98, 110, 22, 25, 24, 70, 2, 271, 17, 498, 412, 750, 877
Offset: 1

Views

Author

Pierre CAMI, Apr 29 2017

Keywords

Comments

Conjecture: a(n) is ~ (n*log(2))^2/9 as n increases.

Examples

			(6*1-3)*2^1-1 = 5, (6*1-3)*2^1+1 = 7; 5 and 7 are twin primes so a(1) = 1.
(6*1-3)*2^2-1 = 11, (6*1-3)*2^2+1 = 13; 11 and 13 are twin primes so a(2) = 1.
		

Crossrefs

Cf. A285808.

Programs

  • Mathematica
    Table[k = 1; While[Times @@ Boole@ PrimeQ[(6 k - 3) 2^n + {-1, 1}] < 1, k++]; k, {n, 69}] (* Michael De Vlieger, May 04 2017 *)
  • PARI
    a(n) = {my(k=1); while (!isprime((6*k-3)*2^n-1) || !isprime((6*k-3)*2^n+1), k++); k;} \\ Michel Marcus, May 01 2017