A275313
Number of set partitions of [n] where adjacent blocks differ in size.
Original entry on oeis.org
1, 1, 1, 4, 7, 23, 100, 333, 1443, 6910, 36035, 186958, 1095251, 6620976, 42151463, 290483173, 2030271491, 15044953241, 116044969497, 930056879535, 7749440529803, 66931578540965, 597728811956244, 5511695171795434, 52578231393128128, 515775207055816041
Offset: 0
a(3) = 4: 123, 12|3, 13|2, 1|23.
a(4) = 7: 1234, 123|4, 124|3, 134|2, 1|234, 1|23|4, 1|24|3.
a(5) = 23: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 12|3|45, 1345|2, 134|25, 135|24, 13|245, 13|2|45, 145|23, 14|235, 15|234, 1|2345, 1|234|5, 1|235|4, 14|2|35, 1|245|3, 15|2|34.
-
b:= proc(n, i) option remember; `if`(n=0, 1, add(`if`(i=j, 0,
b(n-j, `if`(j>n-j, 0, j))*binomial(n-1, j-1)), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..35);
-
b[n_, i_] := b[n, i] = If[n==0, 1, Sum[If[i==j, 0, b[n-j, If[j>n-j, 0, j]]* Binomial[n-1, j-1]], {j, 1, n}]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Dec 18 2016, after Alois P. Heinz *)
A286071
Number of permutations of [n] with nonincreasing cycle sizes.
Original entry on oeis.org
1, 1, 2, 5, 19, 85, 496, 3229, 25117, 215225, 2100430, 22187281, 261228199, 3284651245, 45163266604, 659277401525, 10380194835601, 172251467909809, 3057368096689690, 56867779157145769, 1122474190194034555, 23137433884903034501, 502874858021076645784
Offset: 0
a(3) = 5: (123), (132), (12)(3), (13)(2), (1)(2)(3).
a(4) = 19: (1234), (1243), (1324), (1342), (1423), (1432), (123)(4), (132)(4), (124)(3), (142)(3), (12)(34), (12)(3)(4), (134)(2), (143)(2), (13)(24), (13)(2)(4), (14)(23), (14)(2)(3), (1)(2)(3)(4).
-
b:= proc(n, i) option remember; `if`(n=0, 1, add((j-1)!*
b(n-j, j)*binomial(n-1, j-1), j=1..min(n, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30);
-
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[(j - 1)!*b[n - j, j]*Binomial[n - 1, j - 1], {j, 1, Min[n, i]}]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 24 2018, translated from Maple *)
A286073
Number of permutations of [n] with decreasing cycle sizes.
Original entry on oeis.org
1, 1, 1, 4, 12, 60, 340, 2280, 17220, 151872, 1459584, 15624000, 182318400, 2316837600, 31596570720, 465582237120, 7283287851840, 121620647715840, 2149774858183680, 40196871701360640, 790002144844738560, 16364478334463078400, 354458730544573132800
Offset: 0
-
b:= proc(n, i) option remember;
`if`(n>i*(i+1)/2, 0, `if`(n=0, 1, b(n, i-1)+
`if`(i>n, 0, b(n-i, i-1)*(i-1)!*binomial(n-1, i-1))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30);
-
b[n_, i_] := b[n, i] = If[n > i*(i + 1)/2, 0, If[n == 0, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i - 1]*(i - 1)!*Binomial[n - 1, i - 1]]]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 24 2018, translated from Maple *)
A286074
Number of permutations of [n] with nondecreasing cycle sizes.
Original entry on oeis.org
1, 1, 2, 4, 13, 45, 250, 1342, 10085, 76165, 715588, 6786108, 78636601, 896672473, 12112535378, 163963519810, 2534311844905, 39211836764457, 688584972407680, 12003902219337760, 234324625117308533, 4571805253649981173, 98183221386947058286
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, add(
(j-1)!*b(n-j, j)*binomial(n-1, j-1), j=i..n))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..30);
-
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[(j - 1)!*b[n - j, j]*Binomial[n - 1, j - 1], {j, i, n}]];
a[n_] := b[n, 1];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 25 2018, translated from Maple *)
A286075
Number of permutations of [n] with increasing cycle sizes.
Original entry on oeis.org
1, 1, 1, 3, 8, 38, 182, 1194, 7932, 69192, 591936, 6286272, 66914880, 840036960, 10567285920, 154755036000, 2246755924800, 37283584936320, 618705247829760, 11472473012232960, 212762383625594880, 4386435706887413760, 89954629722500659200, 2030764767987849062400
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
b(n, i+1)+b(n-i, i+1)*(i-1)!*binomial(n-1, i-1)))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..30);
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i > n, 0, b[n, i + 1] + b[n - i, i + 1]*(i - 1)!*Binomial[n - 1, i - 1]]];
a[n_] := b[n, 1];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 28 2018, from Maple *)
A286076
Number of permutations of [n] with alternating cycle size parities.
Original entry on oeis.org
1, 1, 1, 5, 8, 78, 206, 2722, 10516, 169544, 883580, 16569420, 110272040, 2339828920, 19127099680, 450962267600, 4399562960000, 113769961266000, 1295735797694000, 36390357922438000, 475484093140888000, 14390912055770276000, 212715123602601932000
Offset: 0
a(3) = 5: (123), (132), (12)(3), (13)(2), (1)(23).
a(4) = 8: (1234), (1243), (1324), (1342), (1423), (1432), (1)(23)(4), (1)(24)(3).
-
b:= proc(n, t) option remember; `if`(n=0, 1, add(`if`((i+t)::odd,
b(n-i, 1-t)*(i-1)!*binomial(n-1, i-1), 0), i=1..n))
end:
a:= n-> `if`(n=0, 1, b(n, 0)+b(n, 1)):
seq(a(n), n=0..30);
-
b[n_, t_] := b[n, t] = If[n == 0, 1, Sum[If[(i + t) // OddQ, b[n - i, 1 - t]*(i - 1)!*Binomial[n - 1, i - 1], 0], {i, 1, n}]];
a[n_] := If[n == 0, 1, b[n, 0] + b[n, 1]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 28 2018, from Maple *)
A286077
Number of permutations of [n] with a strongly unimodal cycle size list.
Original entry on oeis.org
1, 1, 1, 5, 16, 80, 468, 3220, 24436, 218032, 2114244, 22759788, 267150264, 3413938512, 46668380592, 690881123856, 10841100147072, 181434400544160, 3215124610986240, 60280035304993920, 1186176116251848960, 24624604679704053120, 534223121657911528320
Offset: 0
-
b:= proc(n, i, t) option remember; `if`(t=0 and n>i*(i-1)/2, 0,
`if`(n=0, 1, add(b(n-j, j, 0)*binomial(n-1, j-1)*
(j-1)!, j=1..min(n, i-1))+`if`(t=1, add(b(n-j, j, 1)*
binomial(n-1, j-1)*(j-1)!, j=i+1..n), 0)))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..30);
-
b[n_, i_, t_] := b[n, i, t] = If[t == 0 && n > i*(i-1)/2, 0, If[n == 0, 1, Sum[b[n-j, j, 0]*Binomial[n-1, j-1]*(j-1)!, {j, 1, Min[n, i-1]}] + If[t == 1, Sum[b[n-j, j, 1]*Binomial[n-1, j-1]*(j-1)!, {j, i+1, n}], 0]]];
a[n_] := b[n, 0, 1];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 28 2018, from Maple *)
Showing 1-7 of 7 results.
Comments