A275309
Number of set partitions of [n] with decreasing block sizes.
Original entry on oeis.org
1, 1, 1, 3, 4, 11, 36, 82, 239, 821, 3742, 10328, 42934, 156070, 729249, 4025361, 15032099, 68746675, 334541624, 1645575386, 9104991312, 65010298257, 282768687257, 1616844660914, 8660050947383, 53262316928024, 309119883729116, 2185141720645817
Offset: 0
a(3) = 3: 123, 12|3, 13|2.
a(4) = 4: 1234, 123|4, 124|3, 134|2.
a(5) = 11: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 1345|2, 134|25, 135|24, 145|23.
-
b:= proc(n, i) option remember;
`if`(n>i*(i+1)/2, 0, `if`(n=0, 1, b(n, i-1)+
`if`(i>n, 0, b(n-i, i-1)*binomial(n-1, i-1))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..35);
-
b[n_, i_] := b[n, i] = If[n > i*(i + 1)/2, 0, If[n == 0, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i - 1]*Binomial[n - 1, i - 1]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 21 2017, translated from Maple *)
A275310
Number of set partitions of [n] with nonincreasing block sizes.
Original entry on oeis.org
1, 1, 2, 4, 11, 30, 102, 346, 1353, 5444, 24170, 110082, 546075, 2777828, 15099359, 84491723, 499665713, 3035284304, 19375261490, 126821116410, 866293979945, 6072753348997, 44193947169228, 329387416656794, 2542173092336648, 20069525888319293
Offset: 0
a(3) = 4: 123, 12|3, 13|2, 1|2|3.
a(4) = 11: 1234, 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 14|23, 14|2|3, 1|2|3|4.
-
b:= proc(n, i) option remember; `if`(n=0, 1, add(
b(n-j, j)*binomial(n-1, j-1), j=1..min(n, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..35);
-
b[n_, i_] := b[n, i] = If[n==0, 1, Sum[b[n-j, j]*Binomial[n-1, j-1], {j, 1, Min[n, i]}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 02 2017, translated from Maple *)
A275311
Number of set partitions of [n] with nondecreasing block sizes.
Original entry on oeis.org
1, 1, 2, 3, 7, 12, 43, 89, 363, 1096, 4349, 14575, 77166, 265648, 1369284, 6700177, 33526541, 162825946, 1034556673, 5157939218, 33054650345, 206612195885, 1244742654646, 8071979804457, 62003987375957, 381323590616995, 2827411772791596, 22061592185044910
Offset: 0
a(3) = 3: 123, 1|23, 1|2|3.
a(4) = 7: 1234, 12|34, 13|24, 14|23, 1|234, 1|2|34, 1|2|3|4.
a(5) = 12: 12345, 12|345, 13|245, 14|235, 15|234, 1|2345, 1|23|45, 1|24|35, 1|25|34, 1|2|345, 1|2|3|45, 1|2|3|4|5.
-
b:= proc(n, i) option remember; `if`(n=0, 1,
add(b(n-j, j)*binomial(n-1, j-1), j=i..n))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..35);
-
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n-j, j]*Binomial[n-1, j-1], {j, i, n}]]; a[n_] := b[n, 1]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 22 2017, translated from Maple *)
A275312
Number of set partitions of [n] with increasing block sizes.
Original entry on oeis.org
1, 1, 1, 2, 2, 6, 11, 28, 51, 242, 532, 1545, 6188, 16592, 86940, 302909, 967523, 3808673, 23029861, 71772352, 484629531, 1840886853, 9376324526, 37878035106, 204542429832, 1458360522892, 6241489795503, 45783932444672, 211848342780210, 1137580874772724
Offset: 0
a(4) = 2: 1234, 1|234.
a(5) = 6: 12345, 12|345, 13|245, 14|235, 15|234, 1|2345.
a(6) = 11: 123456, 12|3456, 13|2456, 14|2356, 15|2346, 16|2345, 1|23456, 1|23|456, 1|24|356, 1|25|346, 1|26|345.
-
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, b(n, i+1)+b(n-i, i+1)*binomial(n-1, i-1)))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..35);
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i > n, 0, b[n, i+1] + b[n-i, i+1] * Binomial[n-1, i-1]]]; a[n_] := b[n, 1]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 22 2017, translated from Maple *)
A286072
Number of permutations of [n] where adjacent cycles differ in size.
Original entry on oeis.org
1, 1, 1, 5, 16, 84, 512, 3572, 28080, 256820, 2553728, 28064776, 337319944, 4385615904, 61255920936, 921584068648, 14720437293952, 250190161426720, 4507229152534944, 85630125536152160, 1711040906290680448, 35969941361999955392, 790961860293623563648
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, add(`if`(i=j, 0,
(j-1)!*b(n-j, `if`(j>n-j, 0, j))*binomial(n-1, j-1)), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..30);
-
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[If[i == j, 0, (j - 1)!*b[n - j, If[j > n - j, 0, j]]*Binomial[n - 1, j - 1]], {j, 1, n}]];
a[n_] := b[n, 0];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 24 2018, translated from Maple *)
A275679
Number of set partitions of [n] with alternating block size parities.
Original entry on oeis.org
1, 1, 1, 4, 3, 20, 43, 136, 711, 1606, 12653, 36852, 250673, 1212498, 6016715, 45081688, 196537387, 1789229594, 8963510621, 76863454428, 512264745473, 3744799424978, 32870550965259, 219159966518160, 2257073412153459, 15778075163815474, 165231652982941085
Offset: 0
a(3) = 4: 123, 12|3, 13|2, 1|23.
a(4) = 3: 1234, 1|23|4, 1|24|3.
a(5) = 20: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 12|3|45, 1345|2, 134|25, 135|24, 13|245, 13|2|45, 145|23, 14|235, 15|234, 1|2345, 14|2|35, 15|2|34.
Cf.
A003724,
A005046,
A007837,
A038041,
A275309,
A275310,
A275311,
A275312,
A275313,
A286076,
A361804.
-
b:= proc(n, t) option remember; `if`(n=0, 1, add(
`if`((i+t)::odd, b(n-i, 1-t)*binomial(n-1, i-1), 0), i=1..n))
end:
a:= n-> `if`(n=0, 1, b(n, 0)+b(n, 1)):
seq(a(n), n=0..35);
-
b[n_, t_] := b[n, t] = If[n==0, 1, Sum[If[OddQ[i+t], b[n-i, 1-t] * Binomial[n-1, i-1], 0], {i, 1, n}]]; a[n_] := If[n==0, 1, b[n, 0] + b[n, 1]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *)
A275389
Number of set partitions of [n] with a strongly unimodal block size list.
Original entry on oeis.org
1, 1, 1, 4, 7, 19, 71, 219, 759, 2697, 12395, 47477, 231950, 1040116, 4851742, 26690821, 131478031, 736418510, 4262619682, 24680045903, 145629814329, 935900941506, 5778263418232, 37626913475878, 257550263109475, 1782180357952449, 12526035635331581
Offset: 0
a(3) = 4: 123, 12|3, 13|2, 1|23.
a(4) = 7: 1234, 123|4, 124|3, 134|2, 1|234, 1|23|4, 1|24|3.
a(5) = 19: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 1345|2, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234, 1|2345, 1|234|5, 1|235|4, 1|245|3.
-
b:= proc(n, i, t) option remember; `if`(t=0 and n>i*(i-1)/2, 0,
`if`(n=0, 1, add(b(n-j, j, 0)*binomial(n-1, j-1), j=1..min(n, i-1))
+`if`(t=1, add(b(n-j, j, 1)*binomial(n-1, j-1), j=i+1..n), 0)))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..30);
-
b[n_, i_, t_] := b[n, i, t] = If[t==0 && n > i*(i-1)/2, 0, If[n==0, 1, Sum[b[n-j, j, 0]*Binomial[n-1, j-1], {j, 1, Min[n, i-1]}] + If[t==1, Sum[b[n-j, j, 1]*Binomial[n-1, j-1], {j, i+1, n}], 0]]]; a[n_] := b[n, 0, 1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 07 2017, translated from Maple *)
A280275
Number of set partitions of [n] where sizes of distinct blocks are coprime.
Original entry on oeis.org
1, 1, 2, 5, 12, 37, 118, 387, 1312, 4445, 17034, 73339, 342532, 1616721, 7299100, 31195418, 129179184, 578924785, 3057167242, 18723356715, 120613872016, 738703713245, 4080301444740, 20353638923275, 95273007634552, 443132388701107, 2149933834972928
Offset: 0
a(n) = A000110(n) for n<=3.
a(4) = 12: 1234, 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
a(5) = 37: 12345, 1234|5, 1235|4, 123|45, 123|4|5, 1245|3, 124|35, 124|3|5, 125|34, 12|345, 125|3|4, 12|3|4|5, 1345|2, 134|25, 134|2|5, 135|24, 13|245, 135|2|4, 13|2|4|5, 145|23, 14|235, 15|234, 1|2345, 1|234|5, 1|235|4, 1|23|4|5, 145|2|3, 14|2|3|5, 1|245|3, 1|24|3|5, 1|2|345, 1|2|34|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45, 1|2|3|4|5.
-
with(numtheory):
b:= proc(n, i, s) option remember;
`if`(n=0 or i=1, 1, b(n, i-1, select(x->x<=i-1, s))+
`if`(i>n or factorset(i) intersect s<>{}, 0, b(n-i, i-1,
select(x->x<=i-1, s union factorset(i)))*binomial(n, i)))
end:
a:= n-> b(n$2, {}):
seq(a(n), n=0..30);
-
b[n_, i_, s_] := b[n, i, s] = Expand[If[n==0 || i==1, x^n, b[n, i-1, Select[s, # <= i-1&]] + If[i>n || FactorInteger[i][[All, 1]] ~Intersection~ s != {}, 0, x*b[n-i, i-1, Select[s ~Union~ FactorInteger[i][[All, 1]], # <= i-1&]]*Binomial[n, i]]]];
a[n_] := b[n, n, {}] // CoefficientList[#, x]& // Total;
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 23 2017, translated from Maple *)
Showing 1-8 of 8 results.
Comments