A275313
Number of set partitions of [n] where adjacent blocks differ in size.
Original entry on oeis.org
1, 1, 1, 4, 7, 23, 100, 333, 1443, 6910, 36035, 186958, 1095251, 6620976, 42151463, 290483173, 2030271491, 15044953241, 116044969497, 930056879535, 7749440529803, 66931578540965, 597728811956244, 5511695171795434, 52578231393128128, 515775207055816041
Offset: 0
a(3) = 4: 123, 12|3, 13|2, 1|23.
a(4) = 7: 1234, 123|4, 124|3, 134|2, 1|234, 1|23|4, 1|24|3.
a(5) = 23: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 12|3|45, 1345|2, 134|25, 135|24, 13|245, 13|2|45, 145|23, 14|235, 15|234, 1|2345, 1|234|5, 1|235|4, 14|2|35, 1|245|3, 15|2|34.
-
b:= proc(n, i) option remember; `if`(n=0, 1, add(`if`(i=j, 0,
b(n-j, `if`(j>n-j, 0, j))*binomial(n-1, j-1)), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..35);
-
b[n_, i_] := b[n, i] = If[n==0, 1, Sum[If[i==j, 0, b[n-j, If[j>n-j, 0, j]]* Binomial[n-1, j-1]], {j, 1, n}]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Dec 18 2016, after Alois P. Heinz *)
A275309
Number of set partitions of [n] with decreasing block sizes.
Original entry on oeis.org
1, 1, 1, 3, 4, 11, 36, 82, 239, 821, 3742, 10328, 42934, 156070, 729249, 4025361, 15032099, 68746675, 334541624, 1645575386, 9104991312, 65010298257, 282768687257, 1616844660914, 8660050947383, 53262316928024, 309119883729116, 2185141720645817
Offset: 0
a(3) = 3: 123, 12|3, 13|2.
a(4) = 4: 1234, 123|4, 124|3, 134|2.
a(5) = 11: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 1345|2, 134|25, 135|24, 145|23.
-
b:= proc(n, i) option remember;
`if`(n>i*(i+1)/2, 0, `if`(n=0, 1, b(n, i-1)+
`if`(i>n, 0, b(n-i, i-1)*binomial(n-1, i-1))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..35);
-
b[n_, i_] := b[n, i] = If[n > i*(i + 1)/2, 0, If[n == 0, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i - 1]*Binomial[n - 1, i - 1]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 21 2017, translated from Maple *)
A275310
Number of set partitions of [n] with nonincreasing block sizes.
Original entry on oeis.org
1, 1, 2, 4, 11, 30, 102, 346, 1353, 5444, 24170, 110082, 546075, 2777828, 15099359, 84491723, 499665713, 3035284304, 19375261490, 126821116410, 866293979945, 6072753348997, 44193947169228, 329387416656794, 2542173092336648, 20069525888319293
Offset: 0
a(3) = 4: 123, 12|3, 13|2, 1|2|3.
a(4) = 11: 1234, 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 14|23, 14|2|3, 1|2|3|4.
-
b:= proc(n, i) option remember; `if`(n=0, 1, add(
b(n-j, j)*binomial(n-1, j-1), j=1..min(n, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..35);
-
b[n_, i_] := b[n, i] = If[n==0, 1, Sum[b[n-j, j]*Binomial[n-1, j-1], {j, 1, Min[n, i]}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 02 2017, translated from Maple *)
A275311
Number of set partitions of [n] with nondecreasing block sizes.
Original entry on oeis.org
1, 1, 2, 3, 7, 12, 43, 89, 363, 1096, 4349, 14575, 77166, 265648, 1369284, 6700177, 33526541, 162825946, 1034556673, 5157939218, 33054650345, 206612195885, 1244742654646, 8071979804457, 62003987375957, 381323590616995, 2827411772791596, 22061592185044910
Offset: 0
a(3) = 3: 123, 1|23, 1|2|3.
a(4) = 7: 1234, 12|34, 13|24, 14|23, 1|234, 1|2|34, 1|2|3|4.
a(5) = 12: 12345, 12|345, 13|245, 14|235, 15|234, 1|2345, 1|23|45, 1|24|35, 1|25|34, 1|2|345, 1|2|3|45, 1|2|3|4|5.
-
b:= proc(n, i) option remember; `if`(n=0, 1,
add(b(n-j, j)*binomial(n-1, j-1), j=i..n))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..35);
-
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n-j, j]*Binomial[n-1, j-1], {j, i, n}]]; a[n_] := b[n, 1]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 22 2017, translated from Maple *)
A286075
Number of permutations of [n] with increasing cycle sizes.
Original entry on oeis.org
1, 1, 1, 3, 8, 38, 182, 1194, 7932, 69192, 591936, 6286272, 66914880, 840036960, 10567285920, 154755036000, 2246755924800, 37283584936320, 618705247829760, 11472473012232960, 212762383625594880, 4386435706887413760, 89954629722500659200, 2030764767987849062400
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
b(n, i+1)+b(n-i, i+1)*(i-1)!*binomial(n-1, i-1)))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..30);
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i > n, 0, b[n, i + 1] + b[n - i, i + 1]*(i - 1)!*Binomial[n - 1, i - 1]]];
a[n_] := b[n, 1];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 28 2018, from Maple *)
A275679
Number of set partitions of [n] with alternating block size parities.
Original entry on oeis.org
1, 1, 1, 4, 3, 20, 43, 136, 711, 1606, 12653, 36852, 250673, 1212498, 6016715, 45081688, 196537387, 1789229594, 8963510621, 76863454428, 512264745473, 3744799424978, 32870550965259, 219159966518160, 2257073412153459, 15778075163815474, 165231652982941085
Offset: 0
a(3) = 4: 123, 12|3, 13|2, 1|23.
a(4) = 3: 1234, 1|23|4, 1|24|3.
a(5) = 20: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 12|3|45, 1345|2, 134|25, 135|24, 13|245, 13|2|45, 145|23, 14|235, 15|234, 1|2345, 14|2|35, 15|2|34.
Cf.
A003724,
A005046,
A007837,
A038041,
A275309,
A275310,
A275311,
A275312,
A275313,
A286076,
A361804.
-
b:= proc(n, t) option remember; `if`(n=0, 1, add(
`if`((i+t)::odd, b(n-i, 1-t)*binomial(n-1, i-1), 0), i=1..n))
end:
a:= n-> `if`(n=0, 1, b(n, 0)+b(n, 1)):
seq(a(n), n=0..35);
-
b[n_, t_] := b[n, t] = If[n==0, 1, Sum[If[OddQ[i+t], b[n-i, 1-t] * Binomial[n-1, i-1], 0], {i, 1, n}]]; a[n_] := If[n==0, 1, b[n, 0] + b[n, 1]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *)
A275389
Number of set partitions of [n] with a strongly unimodal block size list.
Original entry on oeis.org
1, 1, 1, 4, 7, 19, 71, 219, 759, 2697, 12395, 47477, 231950, 1040116, 4851742, 26690821, 131478031, 736418510, 4262619682, 24680045903, 145629814329, 935900941506, 5778263418232, 37626913475878, 257550263109475, 1782180357952449, 12526035635331581
Offset: 0
a(3) = 4: 123, 12|3, 13|2, 1|23.
a(4) = 7: 1234, 123|4, 124|3, 134|2, 1|234, 1|23|4, 1|24|3.
a(5) = 19: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 1345|2, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234, 1|2345, 1|234|5, 1|235|4, 1|245|3.
-
b:= proc(n, i, t) option remember; `if`(t=0 and n>i*(i-1)/2, 0,
`if`(n=0, 1, add(b(n-j, j, 0)*binomial(n-1, j-1), j=1..min(n, i-1))
+`if`(t=1, add(b(n-j, j, 1)*binomial(n-1, j-1), j=i+1..n), 0)))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..30);
-
b[n_, i_, t_] := b[n, i, t] = If[t==0 && n > i*(i-1)/2, 0, If[n==0, 1, Sum[b[n-j, j, 0]*Binomial[n-1, j-1], {j, 1, Min[n, i-1]}] + If[t==1, Sum[b[n-j, j, 1]*Binomial[n-1, j-1], {j, i+1, n}], 0]]]; a[n_] := b[n, 0, 1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 07 2017, translated from Maple *)
Showing 1-7 of 7 results.
Comments