A286143 Compound filter: a(n) = T(A055881(n), A046523(n)), where T(n,k) is sequence A000027 used as a pairing function.
1, 5, 2, 12, 2, 31, 2, 38, 7, 23, 2, 94, 2, 23, 16, 138, 2, 94, 2, 80, 16, 23, 2, 355, 7, 23, 29, 80, 2, 499, 2, 530, 16, 23, 16, 706, 2, 23, 16, 302, 2, 499, 2, 80, 67, 23, 2, 1279, 7, 80, 16, 80, 2, 328, 16, 302, 16, 23, 2, 1894, 2, 23, 67, 2082, 16, 499, 2, 80, 16, 467, 2, 2779, 2, 23, 67, 80, 16, 499, 2, 1178, 121, 23, 2, 1894, 16, 23, 16, 302, 2, 1894, 16
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- MathWorld, Pairing Function
Crossrefs
Programs
-
Mathematica
Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 - Boole[n == 1] & @@ {Module[{m = 1}, While[Mod[n, m!] == 0, m++]; m - 1], Times @@ MapIndexed[ Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]]}, {n, 92}] (* Michael De Vlieger, May 04 2017, after Robert G. Wilson v at A055881 *)
-
PARI
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011 A055881(n) = { my(i); i=2; while((0 == (n%i)), n = n/i; i++); return(i-1); } A286143(n) = (1/2)*(2 + ((A055881(n)+A046523(n))^2) - A055881(n) - 3*A046523(n)); for(n=1, 10000, write("b286143.txt", n, " ", A286143(n)));
-
Python
from sympy import factorial, factorint def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def P(n): f = factorint(n) return sorted([f[i] for i in f]) def a046523(n): x=1 while True: if P(n) == P(x): return x else: x+=1 def a055881(n): m = 1 while n%factorial(m)==0: m+=1 return m - 1 def a(n): return T(a055881(n), a046523(n)) # Indranil Ghosh, May 05 2017
-
Scheme
(define (A286143 n) (* (/ 1 2) (+ (expt (+ (A055881 n) (A046523 n)) 2) (- (A055881 n)) (- (* 3 (A046523 n))) 2)))