cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286182 Number of connected induced (non-null) subgraphs of the prism graph with 2n nodes.

Original entry on oeis.org

3, 13, 51, 167, 503, 1441, 4007, 10923, 29355, 78037, 205659, 538127, 1399583, 3621289, 9327695, 23931603, 61186131, 155949085, 396369795, 1004904695, 2541896519, 6416348209, 16165610999, 40657256571, 102090514683, 255968753125, 640899345579, 1602640560479
Offset: 1

Views

Author

Giovanni Resta, May 04 2017

Keywords

Comments

Cases n=1 and n=2 correspond to degenerate prism graphs, but they fit the same (conjectured) linear recurrence as the other terms.

Crossrefs

Cf. A020873 (wheel), A059020 (ladder), A059525 (grid), A286139 (king), A286183 (antiprism), A286184 (helm), A286185 (Möbius ladder), A286186 (friendship), A286187 (web), A286188 (gear), A286189 (rook), A285765 (queen).

Programs

  • Mathematica
    a[n_] := Block[{g = Graph@ Flatten@ Table[{i <-> Mod[i,n] + 1, n+i <-> Mod[i,n] + n+1, i <-> i+n}, {i, n}]}, -1 + ParallelSum[ Boole@ ConnectedGraphQ@ Subgraph[g, s], {s, Subsets@Range[2 n]}]]; Array[a, 8]

Formula

a(n) = 6*a(n-1) - 11*a(n-2) + 4*a(n-3) + 5*a(n-4) - 2*a(n-5) - a(n-6), for n > 6 (conjectured).
a(n) = A002203(n) + 3*n*A000129(n) - 3*n + 1 (conjectured). - Eric W. Weisstein, May 08 2017
G.f.: x*(3 - 5*x + 6*x^2 - 8*x^3 - 5*x^4 - 3*x^5) / ((1 - x)^2*(1 - 2*x - x^2)^2) (conjectured). - Colin Barker, May 31 2017

Extensions

Terms a(18) and beyond from Andrew Howroyd, Aug 15 2017