cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286185 Number of connected induced (non-null) subgraphs of the Möbius ladder graph with 2n nodes.

Original entry on oeis.org

3, 15, 55, 173, 511, 1451, 4019, 10937, 29371, 78055, 205679, 538149, 1399607, 3621315, 9327723, 23931633, 61186163, 155949119, 396369831, 1004904733, 2541896559, 6416348251, 16165611043, 40657256617, 102090514731, 255968753175, 640899345631, 1602640560533
Offset: 1

Views

Author

Giovanni Resta, May 04 2017

Keywords

Crossrefs

Cf. A020873 (wheel), A059020 (ladder), A059525 (grid), A286139 (king), A286182 (prism), A286183 (antiprism), A286184 (helm), A286186 (friendship), A286187 (web), A286188 (gear), A286189 (rook), A285765 (queen).

Programs

  • Mathematica
    a[n_] := Block[{g = CirculantGraph[2 n, {1, n}]}, -1 + ParallelSum[ Boole@ ConnectedGraphQ@ Subgraph[g, s], {s, Subsets@ Range[2 n]}]]; Array[a, 8]

Formula

a(n) = 6*a(n-1) - 11*a(n-2) + 4*a(n-3) + 5*a(n-4) - 2*a(n-5) - a(n-6), for n>6 (conjectured).
a(n) = 1/4*((1-sqrt(2))^n*(4-3*sqrt(2)*n) + (1+sqrt(2))^n*(4+3*sqrt(2)*n)) - 1 - n (conjectured). - Eric W. Weisstein, May 08 2017
a(n) = Lucas(n, 2) + 3*n*Fibonacci(n, 2) - n - 1, where Lucas(n, 2) = A002203(n) and Fibonacci(n, 2) = A000129(n) (conjectured). - Eric W. Weisstein, May 08 2017
G.f. (subject to the above conjectures. In fact all three conjectures are equivalent): (3*x-3*x^2-2*x^3-4*x^4+3*x^5-x^6)/(1-3*x+x^2+x^3)^2. - Robert Israel, May 08 2017

Extensions

a(17)-a(28) from Andrew Howroyd, May 20 2017