cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286188 Number of connected induced (non-null) subgraphs of the gear graph with 2n+1 nodes.

Original entry on oeis.org

6, 26, 76, 218, 664, 2174, 7452, 26130, 92512, 328774, 1170052, 4166106, 14836488, 52839374, 188188396, 670240802, 2387095600, 8501764310, 30279479508, 107841961962, 384084839128, 1367938434910, 4871984975932, 17351831789874, 61799465313024
Offset: 1

Views

Author

Giovanni Resta, May 04 2017

Keywords

Crossrefs

Cf. A020873 (wheel), A059020 (ladder), A059525 (grid), A286139 (king), A286182 (prism), A286183 (antiprism), A286184 (helm), A286185 (Möbius ladder), A286186 (friendship), A286187 (web), A286188 (gear), A286189 (rook), A285765 (queen).

Programs

  • Mathematica
    a[n_] := Block[{g = Graph@ Flatten[{Table[i <-> 2 n + 1, {i, 2, 2 n, 2}], Table[i <-> Mod[i, 2 n] + 1, {i, 2 n}]}]}, -1 + ParallelSum[ Boole@ ConnectedGraphQ@ Subgraph[g, s], {s, Subsets@ Range[2 n + 1]}]]; Array[a, 8]

Formula

a(n) = 6*a(n-1) - 10*a(n-2) + 4*a(n-3) + 3*a(n-4) - 2*a(n-5), for n>5.
a(n) = A206776(n) + 4*n^2 - 2*n + 1. - Eric W. Weisstein, May 08 2017
G.f.: 2*x*(3 - 5*x - 10*x^2 - x^3 - 3*x^4) / ((1 - x)^3*(1 - 3*x - 2*x^2)). - Colin Barker, May 31 2017

Extensions

a(16)-a(25) from Andrew Howroyd, May 20 2017