A286236 Square array A(n,k) = P(A000010(k), (n+k-1)/k) if k divides (n+k-1), 0 otherwise, read by descending antidiagonals as A(1,1), A(1,2), A(2,1), etc. Here P is a two-argument form of sequence A000027 used as a pairing function N x N -> N.
1, 1, 2, 3, 0, 4, 3, 0, 2, 7, 10, 0, 0, 0, 11, 3, 0, 0, 5, 4, 16, 21, 0, 0, 0, 0, 0, 22, 10, 0, 0, 0, 5, 0, 7, 29, 21, 0, 0, 0, 0, 0, 8, 0, 37, 10, 0, 0, 0, 0, 14, 0, 0, 11, 46, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 10, 0, 0, 0, 0, 0, 5, 0, 8, 12, 16, 67, 78, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 79, 21, 0, 0, 0, 0, 0, 0, 27, 0, 0, 0, 0, 22, 92, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 17, 0, 106
Offset: 1
Examples
The top left 12 X 12 corner of the array: 1, 1, 3, 3, 10, 3, 21, 10, 21, 10, 55, 10 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 7, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0 11, 4, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0 16, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0 22, 7, 8, 0, 0, 5, 0, 0, 0, 0, 0, 0 29, 0, 0, 0, 0, 0, 27, 0, 0, 0, 0, 0 37, 11, 0, 8, 0, 0, 0, 14, 0, 0, 0, 0 46, 0, 12, 0, 0, 0, 0, 0, 27, 0, 0, 0 56, 16, 0, 0, 19, 0, 0, 0, 0, 14, 0, 0 67, 0, 0, 0, 0, 0, 0, 0, 0, 0, 65, 0 The first 15 rows when viewed as a triangle: 1, 1, 2, 3, 0, 4, 3, 0, 2, 7, 10, 0, 0, 0, 11, 3, 0, 0, 5, 4, 16, 21, 0, 0, 0, 0, 0, 22, 10, 0, 0, 0, 5, 0, 7, 29, 21, 0, 0, 0, 0, 0, 8, 0, 37, 10, 0, 0, 0, 0, 14, 0, 0, 11, 46, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 10, 0, 0, 0, 0, 0, 5, 0, 8, 12, 16, 67, 78, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 79, 21, 0, 0, 0, 0, 0, 0, 27, 0, 0, 0, 0, 22, 92, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 17, 0, 106
Links
Programs
-
Mathematica
T[n_, m_] := ((n + m)^2 - n - 3*m + 2)/2 t[n_, k_] := If[Mod[n, k] != 0, 0, T[EulerPhi[k], n/k]] Table[Reverse[t[n, #] & /@ Range[n]], {n, 1, 20}] (* David Radcliffe, Jun 12 2025 *)
-
Python
from sympy import totient def T(n, m): return ((n + m)**2 - n - 3*m + 2)//2 def t(n, k): return 0 if n%k!=0 else T(totient(k), n//k) for n in range(1, 21): print([t(n, k) for k in range(1, n + 1)][::-1]) # Indranil Ghosh, May 10 2017
-
Scheme
(define (A286236 n) (A286236bi (A002260 n) (A004736 n))) (define (A286236bi row col) (if (not (zero? (modulo (+ row col -1) col))) 0 (let ((a (A000010 col)) (b (/ (+ row col -1) col))) (* (/ 1 2) (+ (expt (+ a b) 2) (- a) (- (* 3 b)) 2))))) ;; Alternatively, with triangular indexing: (define (A286236 n) (A286236tr (A002024 n) (A002260 n))) (define (A286236tr n k) (A286236bi k (+ 1 (- n k))))
Comments