A286245 Triangular table T(n,k) = P(A046523(k), floor(n/k)), read by rows as T(1,1), T(2,1), T(2,2), etc. Here P is sequence A000027 used as a pairing function N x N -> N.
1, 2, 3, 4, 3, 3, 7, 5, 3, 10, 11, 5, 3, 10, 3, 16, 8, 5, 10, 3, 21, 22, 8, 5, 10, 3, 21, 3, 29, 12, 5, 14, 3, 21, 3, 36, 37, 12, 8, 14, 3, 21, 3, 36, 10, 46, 17, 8, 14, 5, 21, 3, 36, 10, 21, 56, 17, 8, 14, 5, 21, 3, 36, 10, 21, 3, 67, 23, 12, 19, 5, 27, 3, 36, 10, 21, 3, 78, 79, 23, 12, 19, 5, 27, 3, 36, 10, 21, 3, 78, 3
Offset: 1
Examples
The first fifteen rows of triangle: 1, 2, 3, 4, 3, 3, 7, 5, 3, 10, 11, 5, 3, 10, 3, 16, 8, 5, 10, 3, 21, 22, 8, 5, 10, 3, 21, 3, 29, 12, 5, 14, 3, 21, 3, 36, 37, 12, 8, 14, 3, 21, 3, 36, 10, 46, 17, 8, 14, 5, 21, 3, 36, 10, 21, 56, 17, 8, 14, 5, 21, 3, 36, 10, 21, 3, 67, 23, 12, 19, 5, 27, 3, 36, 10, 21, 3, 78, 79, 23, 12, 19, 5, 27, 3, 36, 10, 21, 3, 78, 3, 92, 30, 12, 19, 5, 27, 5, 36, 10, 21, 3, 78, 3, 21, 106, 30, 17, 19, 8, 27, 5, 36, 10, 21, 3, 78, 3, 21, 21
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10585; the first 145 rows of triangle/antidiagonals of array
- Eric Weisstein's World of Mathematics, Pairing Function
Crossrefs
Programs
-
Python
from sympy import factorint def T(n, m): return ((n + m)**2 - n - 3*m + 2)//2 def P(n): f = factorint(n) return sorted([f[i] for i in f]) def a046523(n): x=1 while True: if P(n) == P(x): return x else: x+=1 def t(n, k): return T(a046523(k), int(n//k)) for n in range(1, 21): print([t(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, May 09 2017
-
Scheme
(define (A286245 n) (A286245bi (A002260 n) (A004736 n))) (define (A286245bi row col) (let ((a (A046523 row)) (b (quotient (+ row col -1) row))) (* (/ 1 2) (+ (expt (+ a b) 2) (- a) (- (* 3 b)) 2))))
Comments