cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286260 Compound filter: a(n) = P(A001511(n), A161942(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 8, 1, 39, 4, 8, 1, 157, 79, 47, 4, 39, 22, 8, 4, 600, 37, 782, 11, 256, 1, 47, 4, 157, 466, 233, 11, 39, 106, 47, 1, 2284, 4, 380, 4, 4281, 172, 122, 22, 1132, 211, 8, 56, 256, 742, 47, 4, 600, 1597, 4373, 37, 1278, 352, 122, 37, 157, 11, 1037, 106, 256, 466, 8, 79, 8785, 211, 47, 137, 2083, 4, 47, 37, 19507, 667, 1655, 466, 669, 4, 233, 11, 4661, 7261
Offset: 1

Views

Author

Antti Karttunen, May 07 2017

Keywords

Crossrefs

Programs

  • PARI
    A001511(n) = (1+valuation(n,2));
    A000265(n) = (n >> valuation(n, 2));
    A161942(n) = A000265(sigma(n));
    A286260(n) = (2 + ((A001511(n)+A161942(n))^2) - A001511(n) - 3*A161942(n))/2;
    for(n=1, 16384, write("b286260.txt", n, " ", A286260(n)));
    
  • Python
    from sympy import factorint, divisors, divisor_sigma
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a000265(n): return max(list(filter(lambda i: i%2 == 1, divisors(n))))
    def a161942(n): return a000265(divisor_sigma(n))
    def a001511(n): return 2 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1")
    def a(n): return T(a001511(n), a161942(n)) # Indranil Ghosh, May 07 2017
  • Scheme
    (define (A286260 n) (* (/ 1 2) (+ (expt (+ (A001511 n) (A161942 n)) 2) (- (A001511 n)) (- (* 3 (A161942 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A001511(n)+A161942(n))^2) - A001511(n) - 3*A161942(n)).