A286260 Compound filter: a(n) = P(A001511(n), A161942(n)), where P(n,k) is sequence A000027 used as a pairing function.
1, 8, 1, 39, 4, 8, 1, 157, 79, 47, 4, 39, 22, 8, 4, 600, 37, 782, 11, 256, 1, 47, 4, 157, 466, 233, 11, 39, 106, 47, 1, 2284, 4, 380, 4, 4281, 172, 122, 22, 1132, 211, 8, 56, 256, 742, 47, 4, 600, 1597, 4373, 37, 1278, 352, 122, 37, 157, 11, 1037, 106, 256, 466, 8, 79, 8785, 211, 47, 137, 2083, 4, 47, 37, 19507, 667, 1655, 466, 669, 4, 233, 11, 4661, 7261
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- MathWorld, Pairing Function
Programs
-
PARI
A001511(n) = (1+valuation(n,2)); A000265(n) = (n >> valuation(n, 2)); A161942(n) = A000265(sigma(n)); A286260(n) = (2 + ((A001511(n)+A161942(n))^2) - A001511(n) - 3*A161942(n))/2; for(n=1, 16384, write("b286260.txt", n, " ", A286260(n)));
-
Python
from sympy import factorint, divisors, divisor_sigma def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def a000265(n): return max(list(filter(lambda i: i%2 == 1, divisors(n)))) def a161942(n): return a000265(divisor_sigma(n)) def a001511(n): return 2 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1") def a(n): return T(a001511(n), a161942(n)) # Indranil Ghosh, May 07 2017
-
Scheme
(define (A286260 n) (* (/ 1 2) (+ (expt (+ (A001511 n) (A161942 n)) 2) (- (A001511 n)) (- (* 3 (A161942 n))) 2)))