cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A286460 Compound filter (2-adic valuation & sum of the divisors): a(n) = P(A001511(n), A000203(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 8, 7, 39, 16, 80, 29, 157, 79, 173, 67, 438, 92, 302, 277, 600, 154, 782, 191, 949, 497, 668, 277, 1957, 466, 905, 781, 1656, 436, 2630, 497, 2284, 1129, 1487, 1129, 4281, 704, 1832, 1541, 4282, 862, 4658, 947, 3658, 3004, 2630, 1129, 8133, 1597, 4373, 2557, 4953, 1432, 7262, 2557, 7507, 3161, 4097, 1771, 14368, 1892, 4658, 5357, 8785, 3487, 10442, 2279
Offset: 1

Views

Author

Antti Karttunen, May 10 2017

Keywords

Crossrefs

Cf. A000593, A146076 (sequences matching to this filter), also A000203, A161942, A286260, A286357.

Programs

  • PARI
    A000203(n) = sigma(n);
    A001511(n) = (1+valuation(n,2));
    A286460(n) = (1/2)*(2 + ((A001511(n)+A000203(n))^2) - A001511(n) - 3*A000203(n));
    for(n=1, 10000, write("b286460.txt", n, " ", A286460(n)));
    
  • Python
    from sympy import divisor_sigma as D
    def a001511(n): return bin(n)[2:][::-1].index("1") + 1
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)//2
    def a(n): return T(a001511(n), D(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, May 12 2017
  • Scheme
    (define (A286460 n) (* (/ 1 2) (+ (expt (+ (A001511 n) (A000203 n)) 2) (- (A001511 n)) (- (* 3 (A000203 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A001511(n)+A000203(n))^2) - A001511(n) - 3*A000203(n)).

A286034 Compound filter: a(n) = P(A046523(n), A161942(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 8, 3, 49, 8, 34, 3, 239, 124, 97, 8, 165, 30, 34, 34, 1051, 47, 1237, 17, 508, 21, 97, 8, 727, 565, 331, 74, 165, 122, 733, 3, 4403, 34, 502, 34, 7911, 192, 196, 72, 2302, 233, 526, 68, 508, 1237, 97, 8, 3051, 1774, 5368, 97, 1782, 380, 727, 97, 727, 51, 1231, 122, 3220, 498, 34, 288, 18019, 331, 733, 155, 2713, 34, 733, 47, 35317, 705, 1897, 873, 1047, 34
Offset: 1

Views

Author

Antti Karttunen, May 07 2017

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n >> valuation(n, 2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A161942(n) = A000265(sigma(n));
    A286034(n) = (2 + ((A046523(n)+A161942(n))^2) - A046523(n) - 3*A161942(n))/2;
    for(n=1, 16384, write("b286034.txt", n, " ", A286034(n)));
    
  • Python
    from sympy import factorint, divisors, divisor_sigma
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a000265(n): return max(list(filter(lambda i: i%2 == 1, divisors(n))))
    def a161942(n): return a000265(divisor_sigma(n))
    def a(n): return T(a046523(n), a161942(n)) # Indranil Ghosh, May 07 2017
  • Scheme
    (define (A286034 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A161942 n)) 2) (- (A046523 n)) (- (* 3 (A161942 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A046523(n)+A161942(n))^2) - A046523(n) - 3*A161942(n)).

A286358 Compound filter: a(n) = P(A286357(n), A161942(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 4, 6, 22, 8, 13, 10, 106, 79, 47, 13, 39, 30, 19, 19, 466, 47, 742, 24, 233, 21, 58, 19, 139, 466, 233, 32, 49, 122, 70, 21, 1954, 26, 380, 26, 4096, 192, 139, 49, 1037, 233, 34, 81, 256, 782, 70, 26, 531, 1597, 4279, 70, 1227, 380, 157, 70, 157, 41, 1037, 139, 280, 498, 34, 124, 8002, 256, 83, 174, 2018, 34, 83, 70, 18916, 705, 1655, 531, 669, 34, 280, 41
Offset: 1

Views

Author

Antti Karttunen, May 10 2017

Keywords

Comments

Partitions natural numbers to the same equivalence classes as A000203. That is, for all i, j: a(i) = a(j) <=> A000203(i) = A000203(j). This follows because both A161942(n) and A286357(n) can be (are) defined as functions of A000203, and on the other hand, A000203(n) can be uniquely reconstructed from A161942(n) and A286357(n), thus from a(n).

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A286357(n)+A161942(n))^2) - A286357(n) - 3*A161942(n)).

A286451 Compound filter (2-adic valuation of sigma(n) & 2-adic valuation of n): a(n) = P(A286357(n), A001511(n)), where P(n,k) is sequence A000027 used as a pairing function, with a(1) = 0 by an explicit convention.

Original entry on oeis.org

0, 2, 6, 4, 3, 9, 10, 7, 1, 5, 6, 13, 3, 14, 10, 11, 3, 2, 6, 8, 21, 9, 10, 18, 1, 5, 10, 19, 3, 14, 21, 16, 15, 5, 15, 4, 3, 9, 10, 12, 3, 27, 6, 13, 3, 14, 15, 24, 1, 2, 10, 8, 3, 14, 10, 25, 15, 5, 6, 19, 3, 27, 10, 22, 6, 20, 6, 8, 21, 20, 10, 7, 3, 5, 6, 13, 21, 14, 15, 17, 1, 5, 6, 34, 6, 9, 10, 18, 3, 5, 15, 19, 36, 20, 10, 31, 3, 2, 6, 4, 3, 14, 10
Offset: 1

Views

Author

Antti Karttunen, May 13 2017

Keywords

Crossrefs

Programs

  • PARI
    A001511(n) = (1+valuation(n,2));
    A286357(n) = A001511(sigma(n));
    A286451(n) = if(1==n,0,(1/2)*(2 + ((A286357(n)+A001511(n))^2) - A286357(n) - 3*A001511(n)));
    for(n=1, 10000, write("b286451.txt", n, " ", A286451(n)));
    
  • Python
    from sympy import divisor_sigma as D
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a001511(n): return bin(n)[2:][::-1].index("1") + 1
    def a(n): return 0 if n==1 else T(a001511(D(n)), a001511(n)) # Indranil Ghosh, May 14 2017
  • Scheme
    (define (A286451 n) (if (= 1 n) 0 (* (/ 1 2) (+ (expt (+ (A286357 n) (A001511 n)) 2) (- (A286357 n)) (- (* 3 (A001511 n))) 2))))
    

Formula

a(1) = 0; for n > 1, a(n) = (1/2)*(2 + ((A286357(n)+A001511(n))^2) - A286357(n) - 3*A001511(n)).

A286595 Compound filter (2-adic valuation & deficiency/abundance): a(n) = P(A001511(n), A286449(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 3, 2, 6, 4, 12, 11, 10, 16, 5, 22, 48, 37, 8, 11, 15, 46, 68, 67, 108, 22, 107, 106, 175, 137, 30, 154, 18, 172, 138, 191, 21, 67, 173, 106, 256, 232, 57, 106, 329, 277, 138, 301, 13, 37, 353, 352, 501, 407, 467, 191, 24, 466, 138, 497, 634, 562, 632, 631, 744, 704, 192, 106, 28, 352, 138, 742, 39, 301, 38, 781, 950, 862, 597, 596, 58, 631, 138, 904, 1133, 407
Offset: 1

Views

Author

Antti Karttunen, May 21 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A001511(n)+A286449(n))^2) - A001511(n) - 3*A286449(n)).

A286259 Compound filter: a(n) = P(A001511(n), A049820(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 2, 1, 6, 4, 5, 11, 25, 16, 23, 37, 31, 56, 57, 56, 110, 106, 80, 137, 123, 137, 173, 211, 175, 232, 255, 254, 279, 352, 255, 407, 471, 407, 467, 466, 409, 596, 597, 596, 599, 742, 597, 821, 783, 742, 905, 991, 866, 1036, 992, 1082, 1131, 1276, 1083, 1276, 1279, 1379, 1487, 1597, 1228, 1712, 1713, 1597, 1960, 1831, 1713, 2081, 2019, 2081, 1955, 2347, 1957
Offset: 1

Views

Author

Antti Karttunen, May 07 2017

Keywords

Crossrefs

Programs

  • PARI
    A001511(n) = (1+valuation(n,2));
    A049820(n) = (n-numdiv(n));
    A286259(n) = (2 + ((A001511(n)+A049820(n))^2) - A001511(n) - 3*A049820(n))/2;
    for(n=1, 10000, write("b286259.txt", n, " ", A286259(n)));
    
  • Python
    from sympy import divisor_count as d
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a001511(n): return 2 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1")
    def a(n): return T(a001511(n), n - d(n)) # Indranil Ghosh, May 07 2017
  • Scheme
    (define (A286259 n) (* (/ 1 2) (+ (expt (+ (A001511 n) (A049820 n)) 2) (- (A001511 n)) (- (* 3 (A049820 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A001511(n)+A049820(n))^2) - A001511(n) - 3*A049820(n)).
Showing 1-6 of 6 results.