A286460 Compound filter (2-adic valuation & sum of the divisors): a(n) = P(A001511(n), A000203(n)), where P(n,k) is sequence A000027 used as a pairing function.
1, 8, 7, 39, 16, 80, 29, 157, 79, 173, 67, 438, 92, 302, 277, 600, 154, 782, 191, 949, 497, 668, 277, 1957, 466, 905, 781, 1656, 436, 2630, 497, 2284, 1129, 1487, 1129, 4281, 704, 1832, 1541, 4282, 862, 4658, 947, 3658, 3004, 2630, 1129, 8133, 1597, 4373, 2557, 4953, 1432, 7262, 2557, 7507, 3161, 4097, 1771, 14368, 1892, 4658, 5357, 8785, 3487, 10442, 2279
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Pairing Function
- Index entries for sequences related to sigma(n)
Crossrefs
Programs
-
PARI
A000203(n) = sigma(n); A001511(n) = (1+valuation(n,2)); A286460(n) = (1/2)*(2 + ((A001511(n)+A000203(n))^2) - A001511(n) - 3*A000203(n)); for(n=1, 10000, write("b286460.txt", n, " ", A286460(n)));
-
Python
from sympy import divisor_sigma as D def a001511(n): return bin(n)[2:][::-1].index("1") + 1 def T(n, m): return ((n + m)**2 - n - 3*m + 2)//2 def a(n): return T(a001511(n), D(n)) print([a(n) for n in range(1, 101)]) # Indranil Ghosh, May 12 2017
-
Scheme
(define (A286460 n) (* (/ 1 2) (+ (expt (+ (A001511 n) (A000203 n)) 2) (- (A001511 n)) (- (* 3 (A000203 n))) 2)))
Comments