cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A296089 Filter combining the sum of divisors (A000203) and 2-adic valuation of n (A007814); restricted growth sequence transform of A286460.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 15, 23, 24, 25, 26, 27, 28, 29, 21, 30, 31, 32, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 29, 31, 43, 44, 45, 46, 47, 48, 49, 46, 50, 51, 52, 53, 54, 55, 39, 56, 57, 58, 59, 60, 61, 62, 59, 46, 63, 64, 65, 66, 67, 62, 68, 51, 69, 70, 71, 58, 72, 73, 74, 75, 76, 77, 78, 79, 54, 80, 59, 75
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2017

Keywords

Comments

This seems to be also the restricted growth sequence transform of A286359.
For all i, j:
a(i) = a(j) => A296088(i) = A296088(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A000203(n) = sigma(n);
    A001511(n) = (1+valuation(n,2));
    A286460(n) = (1/2)*(2 + ((A001511(n)+A000203(n))^2) - A001511(n) - 3*A000203(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,A286460(n))),"b296089.txt");

A286360 Compound filter (prime signature & sum of the divisors): a(n) = P(A046523(n), A000203(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 8, 12, 49, 23, 142, 38, 239, 124, 259, 80, 753, 107, 412, 412, 1051, 173, 1237, 212, 1390, 672, 826, 302, 3427, 565, 1087, 1089, 2223, 467, 5080, 530, 4403, 1384, 1717, 1384, 7911, 743, 2086, 1836, 6352, 905, 7780, 992, 4477, 3928, 2932, 1178, 14583, 1774, 5368, 2932, 5898, 1487, 10177, 2932, 10177, 3576, 4471, 1832, 25711, 1955, 5056, 6567, 18019, 3922
Offset: 1

Views

Author

Antti Karttunen, May 10 2017

Keywords

Crossrefs

Cf. A007503, A065608 (sequences matching to this filter), also A000203, A046523, A161942, A286034, A286357.

Programs

  • PARI
    A000203(n) = sigma(n);
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286360(n) = (1/2)*(2 + ((A046523(n)+A000203(n))^2) - A046523(n) - 3*A000203(n));
    for(n=1, 10000, write("b286360.txt", n, " ", A286360(n)));
    
  • Python
    from sympy import factorint, divisor_sigma as D
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a(n): return T(a046523(n), D(n)) # Indranil Ghosh, May 12 2017
  • Scheme
    (define (A286360 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A000203 n)) 2) (- (A046523 n)) (- (* 3 (A000203 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A046523(n)+A000203(n))^2) - A046523(n) - 3*A000203(n)).

A286358 Compound filter: a(n) = P(A286357(n), A161942(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 4, 6, 22, 8, 13, 10, 106, 79, 47, 13, 39, 30, 19, 19, 466, 47, 742, 24, 233, 21, 58, 19, 139, 466, 233, 32, 49, 122, 70, 21, 1954, 26, 380, 26, 4096, 192, 139, 49, 1037, 233, 34, 81, 256, 782, 70, 26, 531, 1597, 4279, 70, 1227, 380, 157, 70, 157, 41, 1037, 139, 280, 498, 34, 124, 8002, 256, 83, 174, 2018, 34, 83, 70, 18916, 705, 1655, 531, 669, 34, 280, 41
Offset: 1

Views

Author

Antti Karttunen, May 10 2017

Keywords

Comments

Partitions natural numbers to the same equivalence classes as A000203. That is, for all i, j: a(i) = a(j) <=> A000203(i) = A000203(j). This follows because both A161942(n) and A286357(n) can be (are) defined as functions of A000203, and on the other hand, A000203(n) can be uniquely reconstructed from A161942(n) and A286357(n), thus from a(n).

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A286357(n)+A161942(n))^2) - A286357(n) - 3*A161942(n)).

A286359 Compound filter: a(n) = P(sigma(n), sigma(2n)), where P(n,k) is sequence A000027 used as a pairing function, and sigma is the sum of divisors (A000203).

Original entry on oeis.org

4, 39, 109, 217, 259, 753, 473, 1005, 1288, 1729, 1093, 3769, 1499, 3105, 4489, 4309, 2503, 8295, 3101, 8557, 8033, 7057, 4489, 16713, 7534, 9633, 12601, 15281, 7051, 28513, 8033, 17829, 18193, 15985, 18193, 40561, 11363, 19761, 24809, 37765, 13903, 50817, 15269, 34537, 48283, 28513, 18193, 70249, 25708, 47679, 41113, 47069, 23059, 79521, 41113, 67281, 50801
Offset: 1

Views

Author

Antti Karttunen, May 10 2017

Keywords

Crossrefs

Cf. A000203, A002131, A054785 (sequences matching to this filter), also A161942, A286357.

Programs

Formula

a(n) = (1/2)*(2 + ((A000203(n)+A000203(2*n))^2) - A000203(n) - 3*A000203(2*n)).

A286572 Compound filter (2-adic valuation of phi(n) & sigma(n)): a(n) = P(A053574(n), A000203(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

0, 1, 7, 22, 23, 67, 29, 122, 79, 173, 67, 408, 107, 277, 328, 531, 214, 742, 191, 949, 530, 631, 277, 1894, 498, 905, 781, 1598, 467, 2704, 497, 2149, 1178, 1600, 1228, 4188, 743, 1771, 1656, 4282, 949, 4658, 947, 3572, 3163, 2557, 1129, 8005, 1597, 4373, 2855, 4953, 1487, 7141, 2704, 7384, 3242, 4097, 1771, 14539, 1955, 4561, 5462, 8520, 3745
Offset: 1

Views

Author

Antti Karttunen, May 26 2017

Keywords

Crossrefs

Programs

  • PARI
    A000203(n) = sigma(n);
    A053574(n) = valuation(eulerphi(n), 2);
    A286572(n) = (1/2)*(2 + ((A053574(n)+A000203(n))^2) - A053574(n) - 3*A000203(n));
    
  • Python
    from sympy import totient, divisor_sigma
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a007814(n): return 1 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1")
    def a(n): return T(a007814(totient(n)), divisor_sigma(n)) # Indranil Ghosh, May 26 2017
  • Scheme
    (define (A286572 n) (* (/ 1 2) (+ (expt (+ (A053574 n) (A000203 n)) 2) (- (A053574 n)) (- (* 3 (A000203 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A053574(n)+A000203(n))^2) - A053574(n) - 3*A000203(n)).

A286595 Compound filter (2-adic valuation & deficiency/abundance): a(n) = P(A001511(n), A286449(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 3, 2, 6, 4, 12, 11, 10, 16, 5, 22, 48, 37, 8, 11, 15, 46, 68, 67, 108, 22, 107, 106, 175, 137, 30, 154, 18, 172, 138, 191, 21, 67, 173, 106, 256, 232, 57, 106, 329, 277, 138, 301, 13, 37, 353, 352, 501, 407, 467, 191, 24, 466, 138, 497, 634, 562, 632, 631, 744, 704, 192, 106, 28, 352, 138, 742, 39, 301, 38, 781, 950, 862, 597, 596, 58, 631, 138, 904, 1133, 407
Offset: 1

Views

Author

Antti Karttunen, May 21 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A001511(n)+A286449(n))^2) - A001511(n) - 3*A286449(n)).
Showing 1-6 of 6 results.