cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A053574 Exponent of 2 in phi(n) where phi(n) = A000010(n).

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 3, 3, 4, 1, 1, 3, 2, 1, 1, 3, 2, 2, 1, 2, 2, 3, 1, 4, 2, 4, 3, 2, 2, 1, 3, 4, 3, 2, 1, 2, 3, 1, 1, 4, 1, 2, 5, 3, 2, 1, 3, 3, 2, 2, 1, 4, 2, 1, 2, 5, 4, 2, 1, 5, 2, 3, 1, 3, 3, 2, 3, 2, 2, 3, 1, 5, 1, 3, 1, 3, 6, 1, 3, 3, 3, 3, 3, 2, 2, 1, 3, 5, 5, 1, 2, 3, 2, 5, 1, 4, 4, 2, 1, 2, 2, 3, 3, 4, 4, 2, 3, 3, 3, 1, 5, 5
Offset: 1

Views

Author

Labos Elemer, Jan 18 2000

Keywords

Examples

			For n = 513 = 27*19, phi(513) = 4*81 so exponent of 2 is 2, thus a(513) = 2.
		

Crossrefs

Programs

  • Mathematica
    IntegerExponent[Array[EulerPhi, 120], 2] (* Michael De Vlieger, Aug 16 2017 *)
  • PARI
    vector(66,n,valuation(eulerphi(n),2)) \\ Joerg Arndt, Apr 22 2011

Formula

a(n) = A007814(A000010(n)).
A000010(n) = A053575(n) * 2^a(n). - Antti Karttunen, May 26 2017
Additive with a(2^e) = e-1, and a(p^e) = A007814(p-1) for an odd prime p. - Amiram Eldar, Sep 05 2023

Extensions

Data section extended to 120 terms by Antti Karttunen, May 26 2017

A286568 Compound filter (phi(n) & 2-adic valuation of sigma(n)): a(n) = P(A000010(n), A286357(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 1, 8, 3, 14, 8, 42, 10, 21, 14, 76, 19, 90, 42, 63, 36, 152, 21, 208, 44, 148, 76, 322, 53, 210, 90, 228, 117, 434, 63, 625, 136, 296, 152, 402, 78, 702, 208, 375, 152, 860, 148, 988, 251, 324, 322, 1271, 169, 903, 210, 627, 324, 1430, 228, 943, 375, 816, 434, 1828, 187, 1890, 625, 777, 528, 1273, 296, 2344, 560, 1220, 402, 2698, 300, 2700, 702, 901
Offset: 1

Views

Author

Antti Karttunen, May 26 2017

Keywords

Crossrefs

Programs

  • PARI
    A000010(n) = eulerphi(n);
    A001511(n) = (1+valuation(n,2));
    A286357(n) = A001511(sigma(n));
    A286568(n) = (1/2)*(2 + ((A000010(n)+A286357(n))^2) - A000010(n) - 3*A286357(n));
    
  • Python
    from sympy import divisor_sigma as D, totient
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a001511(n): return bin(n)[2:][::-1].index("1") + 1
    def a286357(n): return a001511(D(n))
    def a(n): return T(totient(n), a286357(n)) # Indranil Ghosh, May 26 2017
  • Scheme
    (define (A286568 n) (* (/ 1 2) (+ (expt (+ (A000010 n) (A286357 n)) 2) (- (A000010 n)) (- (* 3 (A286357 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A000010(n)+A286357(n))^2) - A000010(n) - 3*A286357(n)).
Showing 1-2 of 2 results.