cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A296090 Filter combining the sum of divisors (A000203) and prime-signature (A101296) of n; restricted growth sequence transform of A286360.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 44, 49, 50, 51, 44, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 57, 61, 64, 65, 66, 67, 68, 69, 57, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 79
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2017

Keywords

Comments

For all i, j:
a(i) = a(j) => A286034(i) = A286034(j).
a(i) = a(j) => A295880(i) = A295880(j).

Crossrefs

Differs from related A295880 for the first time at n=135, where a(135) = 123, while A295880(135) = 104.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A000203(n) = sigma(n);
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286360(n) = (1/2)*(2 + ((A046523(n)+A000203(n))^2) - A046523(n) - 3*A000203(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,A286360(n))),"b296090.txt");

A009205 a(n) = gcd(d(n), sigma(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 2, 1, 1, 2, 2, 2, 2, 4, 4, 1, 2, 3, 2, 6, 4, 4, 2, 4, 1, 2, 4, 2, 2, 8, 2, 3, 4, 2, 4, 1, 2, 4, 4, 2, 2, 8, 2, 6, 6, 4, 2, 2, 3, 3, 4, 2, 2, 8, 4, 8, 4, 2, 2, 12, 2, 4, 2, 1, 4, 8, 2, 6, 4, 8, 2, 3, 2, 2, 2, 2, 4, 8, 2, 2, 1, 2, 2, 4, 4, 4, 4, 4, 2, 6, 4, 6, 4, 4, 4, 12, 2, 3, 6, 1, 2, 8, 2, 2, 8, 2, 2, 4, 2, 8, 4, 2, 2, 8, 4, 6, 2, 4, 4, 8
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[GCD[DivisorSigma[0,n],DivisorSigma[1,n]],{n,120}] (* Harvey P. Dale, Dec 05 2017 *)
  • PARI
    A009205(n) = gcd(numdiv(n),sigma(n)); \\ Antti Karttunen, May 22 2017
    
  • Python
    from math import prod, gcd
    from sympy import factorint
    def A009205(n):
        f = factorint(n).items()
        return gcd(prod(e+1 for p, e in f),prod((p**(e+1)-1)//(p-1) for p,e in f)) # Chai Wah Wu, Jul 27 2023

Formula

a(n) = A064840(n)/A009278(n). - Amiram Eldar, Jan 31 2025

Extensions

Data section extended to 120 terms by Antti Karttunen, May 22 2017

A295300 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A003557(n), A046523(n), A048250(n)].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 44, 49, 50, 51, 44, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 58, 62, 65, 66, 67, 68, 69, 70, 58, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 80
Offset: 1

Views

Author

Antti Karttunen, Nov 19 2017

Keywords

Comments

Restricted growth sequence transform of A291752.
For all i, j:
a(i) = a(j) => A291751(i) = A291751(j),
a(i) = a(j) => A326199(i) = A326199(j) => A294877(i) = A294877(j),
a(i) = a(j) => A322021(i) = A322021(j),
a(i) = a(j) => A295888(i) = A295888(j),
a(i) = a(j) => A296090(i) = A296090(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n));
    Aux295300(n) = (1/2)*(2 + ((A046523(n) + A291750(n))^2) - A046523(n) - 3*A291750(n));
    v295300 = rgs_transform(vector(up_to,n,Aux295300(n)));
    A295300(n) = v295300[n];

Extensions

Name changed and the comments section added by Antti Karttunen, Jul 13 2019

A286460 Compound filter (2-adic valuation & sum of the divisors): a(n) = P(A001511(n), A000203(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 8, 7, 39, 16, 80, 29, 157, 79, 173, 67, 438, 92, 302, 277, 600, 154, 782, 191, 949, 497, 668, 277, 1957, 466, 905, 781, 1656, 436, 2630, 497, 2284, 1129, 1487, 1129, 4281, 704, 1832, 1541, 4282, 862, 4658, 947, 3658, 3004, 2630, 1129, 8133, 1597, 4373, 2557, 4953, 1432, 7262, 2557, 7507, 3161, 4097, 1771, 14368, 1892, 4658, 5357, 8785, 3487, 10442, 2279
Offset: 1

Views

Author

Antti Karttunen, May 10 2017

Keywords

Crossrefs

Cf. A000593, A146076 (sequences matching to this filter), also A000203, A161942, A286260, A286357.

Programs

  • PARI
    A000203(n) = sigma(n);
    A001511(n) = (1+valuation(n,2));
    A286460(n) = (1/2)*(2 + ((A001511(n)+A000203(n))^2) - A001511(n) - 3*A000203(n));
    for(n=1, 10000, write("b286460.txt", n, " ", A286460(n)));
    
  • Python
    from sympy import divisor_sigma as D
    def a001511(n): return bin(n)[2:][::-1].index("1") + 1
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)//2
    def a(n): return T(a001511(n), D(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, May 12 2017
  • Scheme
    (define (A286460 n) (* (/ 1 2) (+ (expt (+ (A001511 n) (A000203 n)) 2) (- (A001511 n)) (- (* 3 (A000203 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A001511(n)+A000203(n))^2) - A001511(n) - 3*A000203(n)).

A286358 Compound filter: a(n) = P(A286357(n), A161942(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 4, 6, 22, 8, 13, 10, 106, 79, 47, 13, 39, 30, 19, 19, 466, 47, 742, 24, 233, 21, 58, 19, 139, 466, 233, 32, 49, 122, 70, 21, 1954, 26, 380, 26, 4096, 192, 139, 49, 1037, 233, 34, 81, 256, 782, 70, 26, 531, 1597, 4279, 70, 1227, 380, 157, 70, 157, 41, 1037, 139, 280, 498, 34, 124, 8002, 256, 83, 174, 2018, 34, 83, 70, 18916, 705, 1655, 531, 669, 34, 280, 41
Offset: 1

Views

Author

Antti Karttunen, May 10 2017

Keywords

Comments

Partitions natural numbers to the same equivalence classes as A000203. That is, for all i, j: a(i) = a(j) <=> A000203(i) = A000203(j). This follows because both A161942(n) and A286357(n) can be (are) defined as functions of A000203, and on the other hand, A000203(n) can be uniquely reconstructed from A161942(n) and A286357(n), thus from a(n).

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A286357(n)+A161942(n))^2) - A286357(n) - 3*A161942(n)).

A286359 Compound filter: a(n) = P(sigma(n), sigma(2n)), where P(n,k) is sequence A000027 used as a pairing function, and sigma is the sum of divisors (A000203).

Original entry on oeis.org

4, 39, 109, 217, 259, 753, 473, 1005, 1288, 1729, 1093, 3769, 1499, 3105, 4489, 4309, 2503, 8295, 3101, 8557, 8033, 7057, 4489, 16713, 7534, 9633, 12601, 15281, 7051, 28513, 8033, 17829, 18193, 15985, 18193, 40561, 11363, 19761, 24809, 37765, 13903, 50817, 15269, 34537, 48283, 28513, 18193, 70249, 25708, 47679, 41113, 47069, 23059, 79521, 41113, 67281, 50801
Offset: 1

Views

Author

Antti Karttunen, May 10 2017

Keywords

Crossrefs

Cf. A000203, A002131, A054785 (sequences matching to this filter), also A161942, A286357.

Programs

Formula

a(n) = (1/2)*(2 + ((A000203(n)+A000203(2*n))^2) - A000203(n) - 3*A000203(2*n)).

A286570 Compound filter (prime signature of n & gcd(n, sigma(n))): a(n) = P(A046523(n), A009194(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 3, 3, 10, 3, 61, 3, 36, 10, 27, 3, 117, 3, 27, 34, 136, 3, 103, 3, 90, 21, 27, 3, 619, 10, 27, 36, 753, 3, 625, 3, 528, 34, 27, 21, 666, 3, 27, 21, 552, 3, 625, 3, 117, 103, 27, 3, 1323, 10, 78, 34, 90, 3, 430, 21, 489, 21, 27, 3, 2545, 3, 27, 78, 2080, 21, 625, 3, 90, 34, 495, 3, 2773, 3, 27, 78, 117, 21, 625, 3, 1224, 136, 27, 3, 3801, 21, 27, 34, 375, 3
Offset: 1

Views

Author

Antti Karttunen, May 26 2017

Keywords

Crossrefs

Programs

  • PARI
    A009194(n) = gcd(n, sigma(n));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286570(n) = (1/2)*(2 + ((A046523(n)+A009194(n))^2) - A046523(n) - 3*A009194(n));
    
  • Python
    from sympy import factorint, gcd, divisor_sigma
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a(n): return T(a046523(n), gcd(n, divisor_sigma(n))) # Indranil Ghosh, May 26 2017
  • Scheme
    (define (A286570 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A009194 n)) 2) (- (A046523 n)) (- (* 3 (A009194 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A046523(n)+A009194(n))^2) - A046523(n) - 3*A009194(n)).

A286572 Compound filter (2-adic valuation of phi(n) & sigma(n)): a(n) = P(A053574(n), A000203(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

0, 1, 7, 22, 23, 67, 29, 122, 79, 173, 67, 408, 107, 277, 328, 531, 214, 742, 191, 949, 530, 631, 277, 1894, 498, 905, 781, 1598, 467, 2704, 497, 2149, 1178, 1600, 1228, 4188, 743, 1771, 1656, 4282, 949, 4658, 947, 3572, 3163, 2557, 1129, 8005, 1597, 4373, 2855, 4953, 1487, 7141, 2704, 7384, 3242, 4097, 1771, 14539, 1955, 4561, 5462, 8520, 3745
Offset: 1

Views

Author

Antti Karttunen, May 26 2017

Keywords

Crossrefs

Programs

  • PARI
    A000203(n) = sigma(n);
    A053574(n) = valuation(eulerphi(n), 2);
    A286572(n) = (1/2)*(2 + ((A053574(n)+A000203(n))^2) - A053574(n) - 3*A000203(n));
    
  • Python
    from sympy import totient, divisor_sigma
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a007814(n): return 1 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1")
    def a(n): return T(a007814(totient(n)), divisor_sigma(n)) # Indranil Ghosh, May 26 2017
  • Scheme
    (define (A286572 n) (* (/ 1 2) (+ (expt (+ (A053574 n) (A000203 n)) 2) (- (A053574 n)) (- (* 3 (A000203 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A053574(n)+A000203(n))^2) - A053574(n) - 3*A000203(n)).

A291765 Compound filter (sum of proper divisors & prime signature): a(n) = P(A001065(n), A046523(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

0, 2, 2, 18, 2, 61, 2, 98, 25, 86, 2, 367, 2, 115, 100, 450, 2, 517, 2, 550, 131, 185, 2, 1747, 42, 226, 203, 769, 2, 2527, 2, 1922, 205, 320, 166, 4060, 2, 373, 248, 2678, 2, 3457, 2, 1315, 979, 491, 2, 7579, 63, 1474, 346, 1642, 2, 3982, 248, 3805, 401, 698, 2, 13969, 2, 775, 1367, 7938, 295, 5749, 2, 2404, 523, 5327, 2, 18844, 2, 1030, 1819, 2839, 295
Offset: 1

Views

Author

Antti Karttunen, Sep 10 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A001065(n)+A046523(n))^2) - A001065(n) - 3*A046523(n)).

A087801 Greatest common divisor of tau(n)+sigma(n) and tau(n)*sigma(n), where tau = A000005 and sigma = A000203.

Original entry on oeis.org

1, 1, 2, 1, 4, 16, 2, 1, 1, 2, 2, 2, 4, 4, 4, 1, 4, 9, 2, 12, 4, 8, 2, 4, 1, 2, 4, 2, 4, 16, 2, 3, 4, 2, 4, 1, 4, 16, 4, 2, 4, 8, 2, 18, 12, 4, 2, 2, 3, 9, 4, 4, 4, 64, 4, 64, 4, 2, 2, 36, 4, 4, 2, 1, 8, 8, 2, 12, 4, 8, 2, 9, 4, 2, 2, 2, 4, 16, 2, 4, 1, 2, 2, 4, 16, 8, 4, 4, 4, 6, 4, 6, 4, 4, 4, 24
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 11 2003

Keywords

Comments

a(n) = GCD(A007503(n), A064840(n)).

Crossrefs

Programs

  • Mathematica
    GCD[Total[#],Times@@#]&/@Table[{DivisorSigma[0,n],DivisorSigma[1,n]},{n,100}] (* Harvey P. Dale, Jul 17 2018 *)
  • PARI
    A087801(n) = gcd(sigma(n)+numdiv(n), sigma(n)*numdiv(n)); \\ Antti Karttunen, May 22 2017
Showing 1-10 of 13 results. Next